
Mathematica techniques used in

notebooks 12-22-16

Purpose
Mathematica/Wolfram Language is an extraordinarily flexible computer language and programming

environment. There are different ways to accomplish almost any mathematical task and practitioners

develop quite different styles. For example, notice the range of approaches taken by different experts

when answering questions posed at mathematica.stackexchange.com/questions.

I have a personal style developed over the years and some of the methods I use will appear unusual,

especially to new users of Mathematica. My style has evolved — partly because I gained experience

and facility, partly because of advances in Mathematica technology. When I embarked on this effort to

resurrect old technical works, I thought it would mainly be a matter of adding annotations to existing

notebooks. However, I found myself cringing at the code I generated years ago and could not resist

tweaks and rewrites. You will be disappointed if you expect rigid consistency between the notebooks

presented on this website.

In this particular notebook, my intent is to isolate and discuss some of the techniques I use.

Initializing a subject matter notebook

Getting Information and help

Labeling sequential operations

Shortcuts for Using Functions

Initializing a subject matter notebook
On opening a subject matter notebook, you will see the following

Initialization: Be sure the files NTGStylesheet2.nb and NTGUtilityFunctions.m is are in the same

directory as that from which this notebook was loaded. Then execute the cell immediately below by

mousing left on the cell bar to the right of that cell and then typing “shift” + “enter”. Respond “Yes” in

response to the query to evaluate initialization cells.

Mathematica techniques used in notebooks 12-22-16.nb 1

copyright © N T Gladd 2016

In[3]:= SetDirectory[NotebookDirectory[]];

(* set directory where source files are located *)

SetOptions[EvaluationNotebook[], (* load the StyleSheet *)

StyleDefinitions → Get["NTGStylesheet2.nb"]];

Get["NTGUtilityFunctions.m"]; (* Load utilities package *)

Executing this code loads a package of convenience functions that are used in most notebooks. It also

establishes a “style” for the notebook that I find pleasing. See the Mathematica documentation on

Stylesheet.

SO - EXECUTE THIS CODE RIGHT NOW. Mouse click left in some part of the gray area and type shift-

enter.

My personal convenience functions are contained in the notebook Utility Functions.nb (source code

with annotations) and Utility Functions.ma (loadable “package” notebook).

Getting information and help
Mathematica (aka Wolfram Language) has extraordinarily good documentation available with a simple

mouse click on Help. This documentation is rich with information, search capabilities, cross references,

tutorials and collections of examples. Even with 20 years of experience, I typically use the Help facility

several times during every programming project. There is much to be learned and you should explore.

Also, the Wolfram.com site has many videos that introduce Mathematica and how it can be used. It is

a good idea to view these videos. Many of the operational aspects of using Mathematica make much

more sense when you can see somebody performing those operations. There are also scores of

YouTube videos by Mathematica users.

One of the best sources of information for experienced Mathematica users is http://mathematica.stackex-

change.com/questions. At that site there exists a invaluable collection of Mathematica resources —

http://mathematica.stackexchange.com/questions/18/where-can-i-find-examples-of-good-mathematica-

programming-practice/259#259.

In my experience, the best way to learn guru level coding techniques in Mathematica is to study the

masterful books by Michael Trott. http://www.mathematicaguidebooks.org/

Suppose you working with a subject matter notebook and encounter the function Sol, a function not

found in Mathematica Help. In fact, Sol is one of the functions defined in Utility Functions.ma. Informa-

tion on Sol can be obtained by typing

Information[Sol]

2 Mathematica techniques used in notebooks 12-22-16.nb

copyright © N T Gladd 2016

Global`Sol

Sol[eqn_, var_] := Solve[eqn, var]〚1, 1〛

or its short hand form

?? Sol

Global`Sol

Sol[eqn_, var_] := Solve[eqn, var]〚1, 1〛

This provides the definition of Sol in terms of the built-in Mathematica function Solve. Want to know

about Solve?

?? Solve

Solve[expr, vars] attempts to solve the system expr of equations or inequalities for the variables vars.

Solve[expr, vars, dom] solves over the domain dom. Common choices of dom are Reals, Integers, and Complexes. 

Attributes[Solve] = {Protected}

Options[Solve] =

Cubics → True, GeneratedParameters → C, InverseFunctions → Automatic, MaxExtraConditions → 0,

Method → Automatic, Modulus → 0, Quartics → True, VerifySolutions → Automatic, WorkingPrecision → ∞

Want to know still more? Mouse click left on the >> on the second line and you will be taken to the full

Mathematica help section on Solve.

What is Sol for? It’s just a short hand way of getting rid of the annoying brackets in

Solve[y ⩵ m x + b, x]

x →
-b + y

m


For example,

Sol[y ⩵ m x + b, x]

x →
-b + y

m

Sol is just some personal syntactic sugar https://en.wikipedia.org/wiki/Syntactic_sugar

Life is too short to spend time guessing what syntax was used for what operation in computer lan-

guages. Particular syntaxes were often chosen according the personal preferences of the language

designer, the preferences of some standards committee, or for obscure historical reasons. Be quick to

use Help. Be quick to look at examples of working code. Be quick to ask questions.

Mathematica techniques used in notebooks 12-22-16.nb 3

copyright © N T Gladd 2016

Labeling sequential operations
Consider a typical physics derivation. One starts with some general principle that has a mathematical

representation and then systematically specializes that principle with some objective in mind. Assump-

tions are introduced, side calculations are performed, simplifications are made — with the goal of

generating a different mathematical representation that has utility in some specialized context. Typi-

cally, there are many steps in this process and some mechanism is needed to keep track of intermedi-

ate results. Mathematica notebooks have In and Out labeling and shortcuts for referring to previous

expressions - %, %%, etc. that are useful in various contexts.

However, I am never smart enough to proceed in a linear fashion from the beginning to the end of a

calculation. As I make grudging progress toward some typically ill-defined goal, I am constantly refining,

revising, getting confused, going off on tangents or just going down blind alleys.

So I have a developed a simple labeling system. Rather than discuss the labeling as an abstract con-

cept, I illustrate its application in the context of a simple Freshman physics derivation — deriving the

two-dimensional equations of motion for a projectile with mass m under gravity.

Since this example is intended for beginners I will be very basic in terms of notation and technique and

proceed step by step. In the regular subject matter notebooks, I take shortcuts, and if you become an

experience user of Mathematica, you will too. However, I note that one of the advantages of developing

a topic in Mathematica is that the intermediate details can be shown in excruciating detail if that is

desired. Pixels are free and there are no journal editors or referees. All of the algorithmic steps can be

generated if desired. On the other hand, details can be easily hidden for aesthetic purposes.

To separate physics and Mathematica motives, I will use a smaller font when I am discussing purely Mathemat-

ica related issues.

I start with Newton’s F = m a in component form for two dimensional motion in the x-y plane.

w[1] = {Fx ⩵ m ax, Fy ⩵ m ay}

{Fx ⩵ ax m, Fy ⩵ ay m}

Here w is a basic Mathematica entity known as a Symbol. Writing

 w[1] = something

 means “assign the DownValues 1 of the Symbol w to the expression something.” Look at Help for DownValues.

Next, I specialize Newton’s law to apply to motion under a gravitational force in the -y direction and

assume there are zero forces in the x direction.

4 Mathematica techniques used in notebooks 12-22-16.nb

copyright © N T Gladd 2016

w[2] = w[1] /. {Fx → 0, Fy → -g} /. {ax → D[x[t], {t, 2}], ay → D[y[t], {t, 2}]}

{0 ⩵ m x′′[t], -g ⩵ m y′′[t]}

This last operation involved applying replacement rules via a postfix operator -- but the result is rather obvious. I discuss

these techniques in detail below.

I solve these equations

w[3] = DSolve[w[2], {x[t], y[t]}, t]

x[t] → C[1] + t C[2], y[t] → -
g t2

2 m
+ C[3] + t C[4]

You get the picture. I simply label each step of the calculation with w[1], w[2], ... so I can easily to refer to previous steps.

In preparation for applying initial conditions I write

w[4] = {w[3], Map[Function[rule, D[rule, t]], w[3]]} // Flatten

x[t] → C[1] + t C[2], y[t] → -
g t2

2 m
+ C[3] + t C[4], x′[t] → C[2], y′[t] → -

g t

m
+ C[4]

w[5] = w[4] /. t → 0 /.

{x[0] → x0, y[0] → y0, x'[0] → v0x, y'[0] → v0y} /. Rule → Equal

{x0 ⩵ C[1], y0 ⩵ C[3], v0x ⩵ C[2], v0y ⩵ C[4]}

where Flatten gets rid of extraneous brackets. Also, one typically changes expressions from equation form (required for

DSolve, etc) to rule form (required for replacements) and vice versa. That is accomplished here with the postfix opera-

tions /. Rule → Equal, or /. Equal → Rule.

Calculate the constants of integration

w[6] = Solve[w[5], {C[1], C[2], C[3], C[4]}] // Flatten

{C[1] → x0, C[2] → v0x, C[3] → y0, C[4] → v0y}

and write the final expressions for the explicit x and y motion.

w[7] = w[3] /. w[6] /. Rule → Equal // Flatten

x[t] ⩵ t v0x + x0, y[t] ⩵ -
g t2

2 m
+ t v0y + y0

Note: all of the intermediate results have been saved. Use Information to see them.

?? w

Mathematica techniques used in notebooks 12-22-16.nb 5

copyright © N T Gladd 2016

Global`w

w[1] = {Fx⩵ ax m, Fy⩵ ay m}

w[2] = {0⩵ m x′′[t], -g⩵ m y′′[t]}

w[3] = x[t] → C[1] + t C[2], y[t] → -
g t2

2 m
+ C[3] + t C[4]

w[4] = x[t] → C[1] + t C[2], y[t] → -
g t2

2 m
+ C[3] + t C[4], x′[t] → C[2], y′[t] → -

g t

m
+ C[4]

w[5] = {x0⩵ C[1], y0⩵ C[3], v0x⩵ C[2], v0y⩵ C[4]}

w[6] = {C[1] → x0, C[2] → v0x, C[3] → y0, C[4] → v0y}

w[7] = x[t]⩵ t v0x + x0, y[t]⩵ -
g t2

2 m
+ t v0y + y0

Note: I didn’t have to use numbers for the DownValues. I could have written

w["final result"] = w[3] /. w[6] /. Rule → Equal // Flatten

x[t] ⩵ t v0x + x0, y[t] ⩵ -
g t2

2 m
+ t v0y + y0

Note: Long complex derivations are naturally separated into parts, I will often use w1[1], w1[2],... to label results in

Section 1, so as to distinguish from w2[1], w2[2],... in Section 2. If there is an Appendix A, I would write wA[1], wA[2],...

There are few restrictions here, you can label long sequential calculations as you wish.

For the Mathematica cognoscenti — I know, I know. I could have derived this result in only a line or two

of terse, cryptic, arguably elegant code. I could have used subscripts to resonate with traditional mathe-

matical notation. I could have been more efficient or satisfied some other aesthetic. This discussion is

intended for beginners.

Shortcuts for Using Functions
Functions are ubiquitous in Mathematica. There are thousands of built-in functions in the latest version

Mathematica 11. Even a casual user of Mathematica quickly begins programming and developing their

own functions. In the notebooks presented on this website, the most common operation will consists of

applying some mathematical transformation to a data structure by operating on that structure with a

function. Someone new to Mathematica should read the documentation on Function, follow the point-

ers to other documents, and read tutorials like tutorial/FunctionalOperationsOverview, guide/Func-

tionCompositionAndOperatorForms, tutorial/SomeGeneralNotationsAndConventions.

In this section, I will limit myself to those methods that I frequently use that might be confusing to a

Mathematica beginner.

Suppose we have some function F that is applied to argument x. I could write

6 Mathematica techniques used in notebooks 12-22-16.nb

copyright © N T Gladd 2016

F[x]

F[x]

where, for the time being, I leave F unspecified

?? F

Global`F

I can apply function F to argument x in several different ways —

{F[x], F@x, x // F}

{F[x], F[x], F[x]}

Why choose one over the other? For operational convenience! — it’s just another example of syntactic

sugar.

Suppose you are carrying out a calculation you apply some operation and arrive at some expression

whose form you don’t like

w[1] = ExpandSin[x] + Exp[-x] Cos[x]3


ⅇ-3 x Cos[x]3 + 3 ⅇ-2 x Cos[x]2 Sin[x] + 3 ⅇ-x Cos[x] Sin[x]2 + Sin[x]3

You could type a new line

w[2] = Simplify[w[1]]

ⅇ-3 x Cos[x] + ⅇx Sin[x]3

However, its simpler to just edit the existing command by adding a postfix operator

w[1] = ExpandSin[x] + Exp[-x] Cos[x]3
 // Simplify

ⅇ-3 x Cos[x] + ⅇx Sin[x]3

Equivalently, with a bit more labor you could edit the existing command to read

w[1] = Simplify@ExpandSin[x] + Exp[-x] Cos[x]3


ⅇ-3 x Cos[x] + ⅇx Sin[x]3

I prefer the postfix form and will quite often make a succession of transformations to an expression to

achieve some objective

Mathematica techniques used in notebooks 12-22-16.nb 7

copyright © N T Gladd 2016

F[x] // G // H

H[G[F[x]]]

Another important technique is the use of “pure functions.” The syntax for pure functions is not intuitive

and you should definitely read tutorial/PureFunctions and look at examples.

but, for example, suppose you want to cube each term in a list of expressions

w[1] = {x, x + y, Sin[x] + Exp[-x]}

x, x + y, ⅇ-x + Sin[x]

You don’t want to retype this list of expressions

x3, (x + y)3, Sin[x] + Exp[-x]3 // Expand

x3, x3 + 3 x2 y + 3 x y2 + y3, ⅇ-3 x + 3 ⅇ-2 x Sin[x] + 3 ⅇ-x Sin[x]2 + Sin[x]3

You suspect Mathematica has a function called Cube and try

Map[Cube, w[1]]

Cube[x], Cube[x + y], Cubeⅇ-x + Sin[x]

but it doesn’t. Instead this operation is easily accomplished with

#
3
 & /@ w[1] // Expand

x3, x3 + 3 x2 y + 3 x y2 + y3, ⅇ-3 x + 3 ⅇ-2 x Sin[x] + 3 ⅇ-x Sin[x]2 + Sin[x]3

where #3& is a pure function and /@ is shorthand for Map -- examples of syntactic sugar. A longer

was of accomplishing this would be

MapFunction{x}, x3, w[1] // Expand

x3, x3 + 3 x2 y + 3 x y2 + y3, ⅇ-3 x + 3 ⅇ-2 x Sin[x] + 3 ⅇ-x Sin[x]2 + Sin[x]3

When reading Mathematica code written by experienced coders, you will see a LOT of pure functions,

and a lot of short hand expressions like /@.

Depending on the response of readers, I may add more notebooks like this so check the Guideline tabs

from time to time.

8 Mathematica techniques used in notebooks 12-22-16.nb

copyright © N T Gladd 2016

