
Some Perturbation Problems

02-08-17
N. T. Gladd

Initialization: Be sure the files NTGStylesheet2.nb and NTGUtilityFunctions.m is are in the same

directory as that from which this notebook was loaded. Then execute the cell immediately below by

mousing left on the cell bar to the right of that cell and then typing “shift” + “enter”. Respond “Yes” in

response to the query to evaluate initialization cells.

In[88]:= SetDirectory[NotebookDirectory[]];

(* set directory where source files are located *)

SetOptions[EvaluationNotebook[], (* load the StyleSheet *)

StyleDefinitions → Get["NTGStylesheet2.nb"]];

Get["NTGUtilityFunctions.m"]; (* Load utilities package *)

Purpose
Perturbation methods are broadly useful but often require long repetitive calculations that can be facili-

tated by the use of Mathematica. Moreover, having immediate access to visualization and numerical

methods provides guidance when formulating analytical calculations as well as convenience when

checking the accuracy and range of validity of results.

In this notebook, I work through some representative perturbation problems related to algebraic equa-

tions in detail. Such problems provide a foundation for the broader application of perturbation methods

to differential equations, integrals, and more.

The book Perturbation Methods, E. J. Hinch, provides a quite readable introduction to perturbation

methods — a topic for which there is a vast literature. Most of the problems in this notebook are drawn

from Hinch. Other favorite books are Introduction to Asymptotics and Special Functions, F. W. J. Olver,

Advanced Mathematical Methods for Scientists and Engineers, C. M. Bender and S. A Orszag, Introduc-

tion to the Foundations of Applied Mathematics, Mark H. Holmes, and the books by A. H. Nayfeh. On a

personal note, I attended and much enjoyed lectures given by Frank Olver, when I was a research

faculty member at the University of Maryland in the late 1970s.

The problems treated below are well described in the sources from which they are drawn. My intent is

not to repeat the existing exposition but to illustrate how the use of Mathematica can facilitate the

Some Perturbation Problems 02-08-17.nb 1

copyright © N T Gladd 2016

solution process.

The sections below treat

 1 Iteration and expansion methods for a regular perturbation problem

 2 A singular perturbation problem

 3 A problem involving expansion in fractional powers of ϵ

 4 Another method for determining an appropriate expansion

 5 A problem for which iteration is preferred

1 Iteration and expansion methods for a regular

perturbation problem
In Section 1.1 Hinch considers the model equation

In[5]:= w1[1] = x2 + ϵ x - 1 ⩵ 0

Out[5]= -1 + x2 + x ϵ ⩵ 0

with 0 < ϵ << 1. If ϵ multiplied the term with the highest degree x2) this would be a singular perturbation

problem. Otherwise it is a regular perturbation problem.

Of course, this model equation is immediately solvable

In[6]:= w1[2] = Solve[w1[1], x]

Out[6]= x →
1

2
-ϵ - 4 + ϵ2 , x →

1

2
-ϵ + 4 + ϵ2 

1a Iteration

Hinch suggests that the following rearrangement is suitable for application of the iteration method

In[10]:= w1a[1] = Solvew1[1] /. x2 → x2, x2〚1, 1〛 /. x2 → x2 // RE

Out[10]= x2 ⩵ 1 - x ϵ

The lowest order solution assumes ϵ = 0.

In[11]:= w1a[2] = Solve[w1a[1] /. ϵ → 0, x]

Out[11]= {{x → -1}, {x → 1}}

I follow Hinch and consider the development of the iteration solution of the positive branch (x → 1 as ϵ →

0)

2 Some Perturbation Problems 02-08-17.nb

copyright © N T Gladd 2016

In[14]:= w1a[3] =  #  & /@ w1a[1] // PowerExpand

Out[14]= x ⩵ 1 - x ϵ

The iteration scheme is

In[15]:= w1a[4] = w1a[3]〚1〛 /. x → xn+1 ⩵ w1a[3]〚2〛 /. x → xn

Out[15]= x1+n ⩵ 1 - ϵ xn

and the starting point is

In[16]:= w1a[5] = x0 ⩵ 1

Out[16]= x0 ⩵ 1

An analogous scheme could be established for the negative branch.

A recursion that implements this iteration scheme is easy to establish.

In[20]:= Clear[X];

X[0] = 1;

X[n_] := X[n] = 1 - ϵ X[n - 1]

Some comments on this implementation are

1) I used X instead of x so that the earlier formulae would not be “contaminated” by establishing an

explicit numerical value for x within the notebook environment.

2) I used X[n_] instead of Xn_ because, as one Mathematica guru on StackExchange puts it, “Don’t use

subscripts in calculations unless you are an expert.” The reason for this admonition is that subscripted

variables in Mathematica are not interpreted as “Symbols” as intuition would dictate. You can get into

trouble by not knowing exactly how Subscripts are implemented. Nonetheless, my background in

theoretical physics often compels me to use subscript notation.

3) The somewhat mysterious line X[n_] := X[n] = 1 - ϵ X[n - 1] implements “memoization,” a

useful technique by which the values of previous calculations are remembered rather than recalculated

(significant time savings).

It is not necessary to loop through the various values of n. Asking for a particular value, say X[6] trig-

gers the recursive valuation of all earlier terms.

In[23]:= X[6]

Out[23]=  1 - ϵ 1 - ϵ 1 - ϵ 1 - ϵ 1 - 1 - ϵ ϵ

So, if I ask for the values associated with X

In[24]:= ?? X

Some Perturbation Problems 02-08-17.nb 3

copyright © N T Gladd 2016

Global`X

X[0] = 1

X[1] = 1 - ϵ

X[2] = 1 - 1 - ϵ ϵ

X[3] = 1 - ϵ 1 - 1 - ϵ ϵ

X[4] = 1 - ϵ 1 - ϵ 1 - 1 - ϵ ϵ

X[5] = 1 - ϵ 1 - ϵ 1 - ϵ 1 - 1 - ϵ ϵ

X[6] = 1 - ϵ 1 - ϵ 1 - ϵ 1 - ϵ 1 - 1 - ϵ ϵ

X[n_] := X[n] = 1 - ϵ X[n - 1]

For future use I generate a list of these results

In[25]:= w1a[6] = Table[{n, X[n]}, {n, 0, 6}]

Out[25]= {0, 1}, 1, 1 - ϵ , 2, 1 - 1 - ϵ ϵ , 3, 1 - ϵ 1 - 1 - ϵ ϵ ,

4, 1 - ϵ 1 - ϵ 1 - 1 - ϵ ϵ , 5,  1 - ϵ 1 - ϵ 1 - ϵ 1 - 1 - ϵ ϵ ,

6,  1 - ϵ 1 - ϵ 1 - ϵ 1 - ϵ 1 - 1 - ϵ ϵ 

and pretty-print them with

4 Some Perturbation Problems 02-08-17.nb

copyright © N T Gladd 2016

In[26]:= LGrid[Join[{{"n", "Xn"}}, w1a[6]], "Iteration Method"]

Out[26]=

Iteration Method
n Xn

0 1

1 1-ϵ

2 1- 1-ϵ ϵ

3 1-ϵ 1- 1-ϵ ϵ

4 1-ϵ 1-ϵ 1- 1-ϵ ϵ

5 1-ϵ 1-ϵ 1-ϵ 1- 1-ϵ ϵ

6 1-ϵ 1-ϵ 1-ϵ 1-ϵ 1- 1-ϵ ϵ

The repeated radicals are not particularly informative so I generate power series representations

In[27]:= w1a[7] = {#〚1〛, Series[#〚2〛, {ϵ, 0, 5}]} & /@ w1a[6]

Out[27]= {0, 1}, 1, 1 -
ϵ

2
-
ϵ2

8
-

ϵ3

16
-
5 ϵ4

128
-
7 ϵ5

256
+ O[ϵ]6, 2, 1 -

ϵ

2
+
ϵ2

8
+
ϵ3

8
+
11 ϵ4

128
+
3 ϵ5

64
+ O[ϵ]6,

3, 1 -
ϵ

2
+
ϵ2

8
-
9 ϵ4

128
-
5 ϵ5

64
+ O[ϵ]6, 4, 1 -

ϵ

2
+
ϵ2

8
-

ϵ4

128
+

ϵ5

32
+ O[ϵ]6,

5, 1 -
ϵ

2
+
ϵ2

8
-

ϵ4

128
+ O[ϵ]6, 6, 1 -

ϵ

2
+
ϵ2

8
-

ϵ4

128
+ O[ϵ]6

In[28]:= LGrid[Join[{{"n", "Xn"}}, w1a[7]], "Iterative Expansion"]

Out[28]=

Iterative Expansion
n Xn

0 1

1 1-
ϵ

2
-

ϵ2

8
-

ϵ3

16
-

5 ϵ4

128
-

7 ϵ5

256
+O[ϵ]6

2 1-
ϵ

2
+

ϵ2

8
+

ϵ3

8
+

11 ϵ4

128
+

3 ϵ5

64
+O[ϵ]6

3 1-
ϵ

2
+

ϵ2

8
-

9 ϵ4

128
-

5 ϵ5

64
+O[ϵ]6

4 1-
ϵ

2
+

ϵ2

8
-

ϵ4

128
+

ϵ5

32
+O[ϵ]6

5 1-
ϵ

2
+

ϵ2

8
-

ϵ4

128
+O[ϵ]6

6 1-
ϵ

2
+

ϵ2

8
-

ϵ4

128
+O[ϵ]6

This series can be compared against a power series expansion of the exact solution. For the positive

branch that is

Some Perturbation Problems 02-08-17.nb 5

copyright © N T Gladd 2016

In[29]:= w1[2]〚2, 1〛

Out[29]= x →
1

2
-ϵ + 4 + ϵ2

In[30]:= w1a[8] = x → Normal@Series[w1[2]〚2, 1, 2〛, {ϵ, 0, 5}]

Out[30]= x → 1 -
ϵ

2
+
ϵ2

8
-

ϵ4

128

which agrees with the iteration result at order 6.

In[31]:= w1a[8]〚2〛 - w1a[7]〚-1, 2〛

Out[31]= O[ϵ]6

I have focused on the calculation. See Hinch for discussion of merits and demerits of the Iteration

method.

1b Expansion method

Hinch develops an approximation for the positive branch by assuming the solution is well represented

by the expansion

In[32]:= expansionRule = x → Sumϵi xi, {i, 0, 7}

Out[32]= x → x0 + ϵ x1 + ϵ2 x2 + ϵ3 x3 + ϵ4 x4 + ϵ5 x5 + ϵ6 x6 + ϵ7 x7

In[33]:= w1b[1] = w1[1] /. expansionRule

Out[33]= -1 + ϵ x0 + ϵ x1 + ϵ2 x2 + ϵ3 x3 + ϵ4 x4 + ϵ5 x5 + ϵ6 x6 + ϵ7 x7 +

x0 + ϵ x1 + ϵ2 x2 + ϵ3 x3 + ϵ4 x4 + ϵ5 x5 + ϵ6 x6 + ϵ7 x7
2
⩵ 0

Collect terms at various orders of ϵ

In[34]:= w1b[2] = CoefficientList[ExpandAll[w1b[1]〚1〛], ϵ]

Out[34]= -1 + x0
2, x0 + 2 x0 x1, x1 + x1

2 + 2 x0 x2, x2 + 2 x1 x2 + 2 x0 x3,

x2
2 + x3 + 2 x1 x3 + 2 x0 x4, 2 x2 x3 + x4 + 2 x1 x4 + 2 x0 x5, x3

2 + 2 x2 x4 + x5 + 2 x1 x5 + 2 x0 x6,

2 x3 x4 + 2 x2 x5 + x6 + 2 x1 x6 + 2 x0 x7, x4
2 + 2 x3 x5 + 2 x2 x6 + x7 + 2 x1 x7,

2 x4 x5 + 2 x3 x6 + 2 x2 x7, x5
2 + 2 x4 x6 + 2 x3 x7, 2 x5 x6 + 2 x4 x7, x6

2 + 2 x5 x7, 2 x6 x7, x7
2

This leads to a sequence of equations

6 Some Perturbation Problems 02-08-17.nb

copyright © N T Gladd 2016

In[35]:= w1b[3] = # ⩵ 0 & /@ w1b[2];

w1b[3] // ColumnForm

Out[36]= -1 + x0
2 ⩵ 0

x0 + 2 x0 x1 ⩵ 0

x1 + x1
2 + 2 x0 x2 ⩵ 0

x2 + 2 x1 x2 + 2 x0 x3 ⩵ 0

x2
2 + x3 + 2 x1 x3 + 2 x0 x4 ⩵ 0

2 x2 x3 + x4 + 2 x1 x4 + 2 x0 x5 ⩵ 0

x3
2 + 2 x2 x4 + x5 + 2 x1 x5 + 2 x0 x6 ⩵ 0

2 x3 x4 + 2 x2 x5 + x6 + 2 x1 x6 + 2 x0 x7 ⩵ 0

x4
2 + 2 x3 x5 + 2 x2 x6 + x7 + 2 x1 x7 ⩵ 0

2 x4 x5 + 2 x3 x6 + 2 x2 x7 ⩵ 0

x5
2 + 2 x4 x6 + 2 x3 x7 ⩵ 0

2 x5 x6 + 2 x4 x7 ⩵ 0

x6
2 + 2 x5 x7 ⩵ 0

2 x6 x7 ⩵ 0

x7
2 ⩵ 0

For n ≥ 1, the equations are linear and easily solved

In[37]:= w1b[4] = Table[Solve[w1b[3]〚i〛, xi-1]〚1, 1〛 , {i, 2, 8}]

Out[37]= x1 → -
1

2
, x2 →

-x1 - x1
2

2 x0
, x3 →

-x2 - 2 x1 x2

2 x0
, x4 →

-x2
2 - x3 - 2 x1 x3

2 x0
, x5 →

-2 x2 x3 - x4 - 2 x1 x4

2 x0
,

x6 →
-x3

2 - 2 x2 x4 - x5 - 2 x1 x5

2 x0
, x7 →

1

2 x0
-2 x3 x4 - 2 x2 x5 - x6 - 2 x1 x6

For the positive branch x0 = 1

In[38]:= w1b[5] = Join[{x0 → 1}, w1b[4]]

Out[38]= x0 → 1, x1 → -
1

2
, x2 →

-x1 - x1
2

2 x0
, x3 →

-x2 - 2 x1 x2

2 x0
,

x4 →
-x2

2 - x3 - 2 x1 x3

2 x0
, x5 →

-2 x2 x3 - x4 - 2 x1 x4

2 x0
,

x6 →
-x3

2 - 2 x2 x4 - x5 - 2 x1 x5

2 x0
, x7 →

1

2 x0
-2 x3 x4 - 2 x2 x5 - x6 - 2 x1 x6

and

In[39]:= w1b[6] = Join[w1b[5]〚1 ;; 2〛, Table[w1b[5]〚i〛 //. w1b[5]〚1 ;; i - 1〛, {i, 3, 8}]]

Out[39]= x0 → 1, x1 → -
1

2
, x2 →

1

8
, x3 → 0, x4 → -

1

128
, x5 → 0, x6 →

1

1024
, x7 → 0

Mathematica note: ReplaceRepeated //. is required instead of Replace /.

The expansion method solution is

Some Perturbation Problems 02-08-17.nb 7

copyright © N T Gladd 2016

w1b[6] = expansionRule /. w1b[6]

x → 1 -
ϵ

2
+
ϵ2

8
-

ϵ4

128
+

ϵ6

1024

which agrees with the results from a power series expansion of the exact solution

2 A singular perturbation problem
Hinch 1.2 treats a singular perturbation problem

In[40]:= w2[1] = ϵ x2 + x - 1 ⩵ 0

Out[40]= -1 + x + x2 ϵ ⩵ 0

Complications arise because ϵ multiplies the term with highest degree

A quick visualization indicates two roots that become widely separated as ϵ increases. For ϵ = 0 the

equation is linear.

In[41]:= Module{f, roots, points, inset, lab, legends, ϵVals = {0.05, 0.1}},

f[x_, ϵ_] := ϵ x2 + x - 1 ;

roots = NSolve[f[x, #], x] & /@ ϵVals;

points = Point[{x, 0}] /. roots;

lab = Stl@StringForm["roots of ``", TraditionalForm[f[x, ϵ]]];

legends = {StringForm["ϵ = 0"],

StringForm["ϵ = ``", ϵVals 〚1〛], StringForm["ϵ = 0", ϵVals 〚2〛]};

Plot[{f[x, 0], f[x, ϵVals 〚1〛], f[x, ϵVals 〚2〛]}, {x, -25, 10},

PlotStyle → {Directive[Black, Dashed], Black, Blue},

AxesLabel → {Stl["x"], Stl["f[x, ϵ]"]},

PlotLegends → legends, ImageSize → 300, PlotLabel → lab,

Epilog → {PointSize[0.02], {Black, points 〚1〛}, {Blue, points 〚2〛}}]

Out[41]=

-25 -20 -15 -10 -5 5 10
x

-20

-10

10

20

30

40
f[x, ϵ]

roots of ϵ x2 +x-1

ϵ = 0

ϵ = 0.05

ϵ = 0

Solving the quadratic, the exact solutions are

8 Some Perturbation Problems 02-08-17.nb

copyright © N T Gladd 2016

In[42]:= w2[2] = Solve[w2[1], x]

Out[42]= x →
-1 - 1 + 4 ϵ

2 ϵ
, x →

-1 + 1 + 4 ϵ

2 ϵ


while the solutions for ϵ << 1 are

In[43]:= w2[3] = #〚1, 1〛 → Normal@Series[#〚1, 2〛, {ϵ, 0, 7}] & /@ w2[2]

Out[43]= x → -1 -
1

ϵ
+ ϵ - 2 ϵ2 + 5 ϵ3 - 14 ϵ4 + 42 ϵ5 - 132 ϵ6 + 429 ϵ7,

x → 1 - ϵ + 2 ϵ2 - 5 ϵ3 + 14 ϵ4 - 42 ϵ5 + 132 ϵ6 - 429 ϵ7

In[44]:= Module{},

Plot
-1 - 1 + 4 ϵ

2 ϵ
, -1 -

1

ϵ
+ ϵ - 2 ϵ

2,
-1 + 1 + 4 ϵ

2 ϵ
, 1 - ϵ + 2 ϵ

2
, {ϵ, 0.01, 1},

PlotStyle → {Black, Directive[Black, Dashed], Blue, Directive[Blue, Dashed]},

AxesLabel → {Stl["ϵ"], Stl["roots"]}, ImageSize → 300,

PlotLabel → Stl["exact and small ϵ approximation\nof the two roots"]

Out[44]=

0.2 0.4 0.6 0.8 1.0
ϵ

-10

-8

-6

-4

-2

2

roots

exact and small ϵ approximation

of the two roots

I apply the expansion method for the root at large negative x.

In this case, the assumed form of the expansion is

In[45]:= expansionRule = x → Sumϵi xi, {i, -1, 7}

Out[45]= x →
x-1

ϵ
+ x0 + ϵ x1 + ϵ2 x2 + ϵ3 x3 + ϵ4 x4 + ϵ5 x5 + ϵ6 x6 + ϵ7 x7

Choosing the leading exponent was easy since it was known from the expansion of the exact solution.

But — suppose we were tasked with developing an expansion solution for a root of a complicated

equation for which we had little insight. One brute force way readily available to a Mathematica user

would be to generate a numerical solution and fit it to a polynomial in ϵ

Some Perturbation Problems 02-08-17.nb 9

copyright © N T Gladd 2016

In[46]:= Module{f, rootNumerical},

f[x_, ϵ_] := ϵ x2 + x - 1 ;

rootNumerical =

Table[{ϵ, FindRoot[f[x, ϵ] ⩵ 0, {x, -100}]〚1, 2〛}, {ϵ, 0.01, 0.1, 0.01}];

FitrootNumerical, 
1

ϵ2
,

1

ϵ
, 1, ϵ, ϵ

2
, ϵ

Out[46]= -0.997874 +
1.60693 × 10-7

ϵ2
-
1.00003

ϵ
+ 0.938648 ϵ - 1.17764 ϵ2

The smallness of the coefficient of ϵ-2 indicates the leading term is ϵ-1. Further on, I’ll discuss other

methods for determining the expansion rule

In[47]:= w2[4] = w2[1] /. expansionRule

Out[47]= -1 +
x-1

ϵ
+ x0 + ϵ x1 + ϵ2 x2 + ϵ3 x3 + ϵ4 x4 + ϵ5 x5 + ϵ6 x6 +

ϵ7 x7 + ϵ
x-1

ϵ
+ x0 + ϵ x1 + ϵ2 x2 + ϵ3 x3 + ϵ4 x4 + ϵ5 x5 + ϵ6 x6 + ϵ7 x7

2

⩵ 0

The function CoefficientList used above does not work when there are negative exponents, so I write

my own algorithm for extracting the equations.

10 Some Perturbation Problems 02-08-17.nb

copyright © N T Gladd 2016

In[48]:= w2[5] = Module{expansion, termm1, term0, termp, eqns},

expansion = ExpandAll[w2[4]〚1〛];

(* Note the technique used for ϵ-1 *)

termm1 = Select[expansion, Not@FreeQ[#, Power[ϵ, -1]] &];

term0 = Select[expansion, FreeQ[#, ϵ] &];

termp = CoefficientList[expansion - termm1 - term0, ϵ]〚2 ;; -1〛;

eqns = {termm1 /. ϵ → 1, term0, termp} // Flatten;

# ⩵ 0 & /@ eqns;

w2[5] // ColumnForm

Out[49]= x-1 + x-1
2 ⩵ 0

-1 + x0 + 2 x-1 x0 ⩵ 0

x0
2 + x1 + 2 x-1 x1 ⩵ 0

2 x0 x1 + x2 + 2 x-1 x2 ⩵ 0

x1
2 + 2 x0 x2 + x3 + 2 x-1 x3 ⩵ 0

2 x1 x2 + 2 x0 x3 + x4 + 2 x-1 x4 ⩵ 0

x2
2 + 2 x1 x3 + 2 x0 x4 + x5 + 2 x-1 x5 ⩵ 0

2 x2 x3 + 2 x1 x4 + 2 x0 x5 + x6 + 2 x-1 x6 ⩵ 0

x3
2 + 2 x2 x4 + 2 x1 x5 + 2 x0 x6 + x7 + 2 x-1 x7 ⩵ 0

2 x3 x4 + 2 x2 x5 + 2 x1 x6 + 2 x0 x7 ⩵ 0

x4
2 + 2 x3 x5 + 2 x2 x6 + 2 x1 x7 ⩵ 0

2 x4 x5 + 2 x3 x6 + 2 x2 x7 ⩵ 0

x5
2 + 2 x4 x6 + 2 x3 x7 ⩵ 0

2 x5 x6 + 2 x4 x7 ⩵ 0

x6
2 + 2 x5 x7 ⩵ 0

2 x6 x7 ⩵ 0

x7
2 ⩵ 0

Easily solved

In[50]:= w2[6] = Table[Solve[w2[5]〚i〛, xi-2]〚1, 1〛 , {i, 1, 9}]

Out[50]= x-1 → -1, x0 →
1

1 + 2 x-1
, x1 → -

x0
2

1 + 2 x-1
, x2 → -

2 x0 x1

1 + 2 x-1
,

x3 →
-x1

2 - 2 x0 x2

1 + 2 x-1
, x4 → -

2 (x1 x2 + x0 x3)

1 + 2 x-1
, x5 →

-x2
2 - 2 x1 x3 - 2 x0 x4

1 + 2 x-1
,

x6 → -
2 (x2 x3 + x1 x4 + x0 x5)

1 + 2 x-1
, x7 → -x3

2 - 2 x2 x4 - 2 x1 x5 - 2 x0 x6  1 + 2 x-1

The explicit coefficients are

In[51]:= w2[7] = Join[{w2[6]〚1〛}, Table[w2[6]〚i〛 //. w2[6]〚1 ;; i - 1〛, {i, 2, 9}]]

Out[51]= {x-1 → -1, x0 → -1, x1 → 1, x2 → -2, x3 → 5, x4 → -14, x5 → 42, x6 → -132, x7 → 429}

Some Perturbation Problems 02-08-17.nb 11

copyright © N T Gladd 2016

In[52]:= w2[8] = expansionRule /. w2[7]

Out[52]= x → -1 -
1

ϵ
+ ϵ - 2 ϵ2 + 5 ϵ3 - 14 ϵ4 + 42 ϵ5 - 132 ϵ6 + 429 ϵ7

Recall the result of the expansion of the exact solution

In[53]:= w2[3]〚1〛

Out[53]= x → -1 -
1

ϵ
+ ϵ - 2 ϵ2 + 5 ϵ3 - 14 ϵ4 + 42 ϵ5 - 132 ϵ6 + 429 ϵ7

which is identical to the series just calculated

In[54]:= w2[8]〚2〛 - w2[3]〚1, 2〛

Out[54]= 0

Of course, if one found oneself performing repetitive calculations of this sort, it would be easy enough to

collect the required operations into a function that could called for each new calculation.

3 A problem involving expansion in fractional powers of ϵ
In Section 1.3, Hinch discusses a example that requires an expansion in terms of fractional power of ϵ

In[56]:= w3[1] = 1 - ϵ x2 - 2 x + 1 ⩵ 0

Out[56]= 1 - 2 x + x2 1 - ϵ ⩵ 0

I first take advantage of the available exact solution to generate the series that will be later calculated

In[57]:= w3[2] = Solve[w3[1], x]

Out[57]= x →
-1 - ϵ

-1 + ϵ
, x →

-1 + ϵ

-1 + ϵ


In[58]:= w3[3] = w3[2] /. ϵ → 0

Out[58]= {{x → 1}, {x → 1}}

In this case, the expansion involves fractional powers.

In[59]:= w3[3] = #〚1, 1〛 → Normal@Series[#〚1, 2〛 , {ϵ, 0, 3}] & /@ w3[2]

Out[59]= x → 1 + ϵ + ϵ + ϵ3/2 + ϵ2 + ϵ5/2 + ϵ3, x → 1 - ϵ + ϵ - ϵ3/2 + ϵ2 - ϵ5/2 + ϵ3

A visualization provides some insight — there are double roots at x = 1 for ϵ = 0, but these roots sepa-

12 Some Perturbation Problems 02-08-17.nb

copyright © N T Gladd 2016

rate for finite ϵ

In[60]:= Module{f},

f[x_, ϵ_] := 1 - ϵ x2 - 2 x + 1 ;

Plot[{f[x, 0], f[x, 0.1], f[x, 0.2]}, {x, 0, 2},

PlotStyle → {Black, Blue, Green}, AxesLabel → {Stl["x"], Stl["f[x, ϵ]"]},

PlotLegends → {"ϵ = 0", "ϵ = 0.01", "ϵ = 0.1"}, ImageSize → 300]

Out[60]=

0.5 1.0 1.5 2.0
x

-0.2

0.2

0.4

0.6

0.8

1.0

f[x, ϵ]

ϵ = 0

ϵ = 0.01

ϵ = 0.1

One obstacle when using the expansion method is that a reasonable guess must be made for the form

of the expansion. In this case the explicit form is known from the exact solution. But, suppose that we

don’t have an exact solution. I give two methods for guessing the form of the expansion.

3a Visualize the roots on a log log plot

Numerically determine the roots and plot the deviation from their ϵ = 0 value. In the following I consider

the branch for which the roots are less than 1 as ϵ increases, and plot log[1 - root] as a function of log[ϵ]

for small ϵ.

Some Perturbation Problems 02-08-17.nb 13

copyright © N T Gladd 2016

In[61]:= Module{f, rootGuess, roots, rootDiffs, points},

f[x_, ϵ_] := 1 - ϵ x2 - 2 x + 1 ;

rootGuess = 0.5;

roots =

Table[{ϵ, FindRoot[f[x, ϵ] , {x, rootGuess}]〚1, 2〛}, {ϵ, 0.001, 0.01, 0.001}];

rootDiffs = {Log[#〚1〛], Log[1 - #〚2〛]} & /@ roots;

points = OC[#, Black] & /@ rootDiffs;

LogLogPlotϵ1/4, ϵ
1/3, ϵ

1/2, ϵ, {ϵ, 0.001, 0.01},

Epilog → points, PlotLegends → "ϵ1/4", "ϵ1/3", "ϵ1/2", "ϵ",

AxesLabel → {Stl["Log[ϵ]"], Stl["Log[1 - f(ϵ)]"]}

Out[61]=

0.002 0.005 0.010
Log[ϵ]

0.005

0.010

0.050

0.100

Log[1 - f(ϵ)]

ϵ1/4

ϵ1/3

ϵ1/2

ϵ

From this figure I surmise the expansion should be

a0 + a 1

2

ϵ
1

2 + a1 ϵ + ...

A beginning student might reasonably ask the question - Why expend so much effort developing a

perturbation solution when a numerical solution is easily obtained?” The answer is that analytical solu-

tions are extraordinarily useful in science and mathematics. They allow one to reason about mecha-

nisms, to generalize to other problems, to postpone the use of numerical methods to later stages of

analysis, and much more. As Richard Hamming said, “the purpose of computing is insight, not num-

bers.”

3b Fit the deviation of roots from their ϵ = 0 to a functional form

Numerically determine the roots and plot the deviation from their ϵ = 0 value. In the following I consider

the branch for which the roots are less than 1 as ϵ increases. I assume that 1 - root(ϵ) = a ϵb and use

the function NonlinearModelFit to estimate a and b

14 Some Perturbation Problems 02-08-17.nb

copyright © N T Gladd 2016

In[90]:= Module{f, rootGuess, roots, rootDiffs, points},

f[x_, ϵ_] := 1 - ϵ x2 - 2 x + 1 ;

rootGuess = 0.5;

roots =

Table[{ϵ, FindRoot[f[x, ϵ] , {x, rootGuess}]〚1, 2〛}, {ϵ, 0.001, 0.01, 0.001}];

rootDiffs = {#〚1〛, 1 - #〚2〛} & /@ roots;

NonlinearModelFitrootDiffs, a ϵ
b, {a, b}, ϵ

Out[90]= FittedModel 0.788439 ϵ0.468529 

From the fitted result a = 0.788, b = 0.468 I again surmise the expansion should be

a0 + a 1

2

ϵ
1

2 + a1 ϵ + ...

3c Application of expansion method

Armed with a good idea of an appropriate form of the expansion I assume

In[63]:= expansionRule = x → 1 + Sumϵ
i

2 x i

2

, {i, 1, 4}

Out[63]= x → 1 + ϵ x1

2

+ ϵ x1 + ϵ3/2 x 3

2

+ ϵ2 x2

Then

In[64]:= w3c[1] = w3[1] /. expansionRule

Out[64]= 1 - 2 1 + ϵ x1

2

+ ϵ x1 + ϵ3/2 x 3

2

+ ϵ2 x2 + 1 - ϵ 1 + ϵ x1

2

+ ϵ x1 + ϵ3/2 x 3

2

+ ϵ2 x2
2

⩵ 0

This leads to the equations

Some Perturbation Problems 02-08-17.nb 15

copyright © N T Gladd 2016

In[65]:= w3c[2] = Module{expansion, eqns},

(*CoefficientList can be used if

the expansion variable is forced to have integer powers*)

expansion = ExpandAll[w3c[1]〚1〛] /. ϵ → η
2
// PowerExpand;

eqns = CoefficientList[expansion, η];

# ⩵ 0 & /@ eqns;

w3c[2] // ColumnForm

Out[66]= True
True

-1 + x1

2

2 ⩵ 0

-2 x1

2

+ 2 x1

2

x1 ⩵ 0

-x1

2

2 - 2 x1 + x1
2 + 2 x1

2

x 3

2

⩵ 0

-2 x1

2

x1 - 2 x3

2

+ 2 x1 x3

2

+ 2 x1

2

x2 ⩵ 0

-x1
2 - 2 x1

2

x 3

2

+ x3

2

2 - 2 x2 + 2 x1 x2 ⩵ 0

-2 x1 x3

2

- 2 x1

2

x2 + 2 x3

2

x2 ⩵ 0

-x3

2

2 - 2 x1 x2 + x2
2 ⩵ 0

-2 x3

2

x2 ⩵ 0

-x2
2 ⩵ 0

The two lowest order equations in ϵ0 and ϵ
1

2 provide no information

The equation in ϵ provides two values for x 1

2
!

In[67]:= w3c[3] = Solvew3c[2]〚3〛 , x 1

2



Out[67]= x1

2

→ -1, x1

2

→ 1

No multiplicity at order ϵ
3

2

In[68]:= w3c[4] = Solve[w3c[2]〚4〛, x1]〚1, 1〛

Out[68]= x1 → 1

 Proceeding

In[69]:= w3c[5] = Solvew3c[2]〚5〛, x 3

2

〚1, 1〛

Out[69]= x3

2

→

x1

2

2 + 2 x1 - x1
2

2 x1

2

16 Some Perturbation Problems 02-08-17.nb

copyright © N T Gladd 2016

In[70]:= w3c[6] = Solve[w3c[2]〚6〛, x2]〚1, 1〛

Out[70]= x2 →

x1

2

x1 + x3

2

- x1 x3

2

x 1

2

The general expansion is

In[71]:= w3c[7] = expansionRule /. w3c[6] /. w3c[5] /. w3c[4]

Out[71]= x → 1 + ϵ + ϵ2 + ϵ x1

2

+

ϵ3/2 1 + x1

2

2

2 x 1

2

and the specific forms are

In[72]:= w3c[8] = {w3c[7] /. w3c[3]〚1〛, w3c[7] /. w3c[3]〚2〛}

Out[72]= x → 1 - ϵ + ϵ - ϵ3/2 + ϵ2, x → 1 + ϵ + ϵ + ϵ3/2 + ϵ2

in agreement with the expansion of the exact solutions.

I have explicitly shown all the steps in this example. The various sequential operations could be col-

lected into a single function if there were sufficient motivation.

4 Another method for determining an appropriate

expansion
Departing from examples in Hinch I turn to Section 2.2 of Introduction to the Foundations of Applied

Mathematics, Mark H. Holmes. Holmes discusses a general method for determining expansions and

applies it to different example problems. I implement this method in Mathematica for a problem similar

to those treated in previous sections.

Consider the regular perturbation problem

In[91]:= w4[1] = x2 + 2 ϵ x - 1 ⩵ 0

Out[91]= -1 + x2 + 2 x ϵ ⩵ 0

Holmes suggests the general expansion form

x→ x0 + x1 ϵ
α + x2 ϵ

β + x3 ϵ
γ + ...

where it is assumed α << β << γ << ... so that ϵα >> ϵβ >> ϵγ >> ...

I will consider only leading terms by explicitly choosing

Some Perturbation Problems 02-08-17.nb 17

copyright © N T Gladd 2016

In[92]:= expansionRule = x → x0 + ϵ
α x1 + ϵ

β x2

Out[92]= x → x0 + ϵα x1 + ϵβ x2

In[93]:= w4[2] = w4[1] /. expansionRule // ExpandAll

Out[93]= -1 + 2 ϵ x0 + x0
2 + 2 ϵ1+α x1 + 2 ϵα x0 x1 + ϵ2 α x1

2 + 2 ϵ1+β x2 + 2 ϵβ x0 x2 + 2 ϵα+β x1 x2 + ϵ2 β x2
2 ⩵ 0

At lowest order

In[94]:= w4[3] = w4[2] /. ϵ → 0 /. 0_ → 0

Out[94]= -1 + x0
2 ⩵ 0

there are two roots

In[95]:= w4[4] = Solve[w4[3], x0]

Out[95]= {{x0 → -1}, {x0 → 1}}

Normally I would substitute one of these values for x0 into the perturbation expression and calculate the

next order correction. In this case I just substitute the zero order equation and express the higher order

corrections in terms of x0.

In[96]:= w4[5] = w4[2] /. x0
2
→ 1

Out[96]= 2 ϵ x0 + 2 ϵ1+α x1 + 2 ϵα x0 x1 + ϵ2 α x1
2 + 2 ϵ1+β x2 + 2 ϵβ x0 x2 + 2 ϵα+β x1 x2 + ϵ2 β x2

2 ⩵ 0

At this stage, the lowest order term that remains is linear in ϵ, the plan is to determine the value of α

that will allow that term to be balanced.

I note that the term linear in ϵ can be selected from the general expression with the operation

In[97]:= Selectw4[5]〚1〛 , MatchQ[#, a_. ϵ] &

Out[97]= 2 ϵ x0

and those terms containing ϵα with

In[98]:= Selectw4[5]〚1〛 , Not@FreeQ#, ϵ
α
 &

Out[98]= 2 ϵα x0 x1

or with

18 Some Perturbation Problems 02-08-17.nb

copyright © N T Gladd 2016

In[99]:= Selectw4[5]〚1〛 , MatchQ#, a_. ϵ
α
 &

Out[99]= 2 ϵα x0 x1

Thus

In[100]:= w4[6] = Selectw4[5]〚1〛 , OrMatchQ[#, a_. ϵ], MatchQ#, a_. ϵ
α
 & ⩵ 0

Out[100]= 2 ϵ x0 + 2 ϵα x0 x1 ⩵ 0

All other terms, such as ϵα+1 or ϵβ will be much smaller

From this equation, both α and x1 must be determined. I’ll illustrate an algorithm that accomplishes

these tasks. I first proceed step by step and then encapsulate the operations into a general function

An equation for α can be obtained with

In[101]:= aside[1] = w4[6]〚1〛 /. a_ ϵ + b_ ϵ
α

→ ϵ - ϵ
α
 ⩵ 0

Out[101]= ϵ - ϵα ⩵ 0

and solved

In[102]:= aside[2] = Quiet@Solve[aside[1], α]〚1, 1〛

Out[102]= α → 1

Then,

In[103]:= aside[3] = {aside[2], Solve[w4[6] /. aside[2], x1]〚1, 1〛}

Out[103]= {α → 1, x1 → -1}

and the order ϵ correction has been obtained.

I define the function

In[104]:= Clear[BalanceAtOrder];

BalanceAtOrder[eqn_, ϵOrder_, orderVariable_, perturbationVariable_] :=

Module{orderVariableValue, perturbationVariableValue},

orderVariableValue = Quiet@SolveϵOrder - ϵ
orderVariable

⩵ 0, orderVariable〚1, 1〛;

perturbationVariableValue =

Solveeqn /. orderVariableValue, perturbationVariable〚1, 1〛;

{orderVariableValue, perturbationVariableValue} 

Using this function, the order ϵ balancing terms are obtain immediately

In[106]:= w4[7] = BalanceAtOrder[w4[6], ϵ, α, x1]

Out[106]= {α → 1, x1 → -1}

Some Perturbation Problems 02-08-17.nb 19

copyright © N T Gladd 2016

Proceeding to the next order

In[110]:= w4[8] = w4[5] /. w4[7]

Out[110]= -ϵ2 + 2 ϵβ x0 x2 + ϵ2 β x2
2 ⩵ 0

Select the terms that must balance

In[113]:= w4[9] = Selectw4[8]〚1〛 , OrMatchQ#, a_. ϵ
2
, MatchQ#, a_. ϵ

β
 & ⩵ 0

Out[113]= -ϵ2 + 2 ϵβ x0 x2 ⩵ 0

Then

In[114]:= w4[10] = BalanceAtOrderw4[9], ϵ
2, β, x2 // PowerExpand

Out[114]= β → 2, x2 →
1

2 x0


So, the expansionRule can be made specific

In[115]:= w4[11] = expansionRule /. w4[7] /. w4[10]

Out[115]= x → -ϵ +
ϵ2

2 x0
+ x0

I compare this result with the solution of the original equation. The original equation was quadratic and

so the exact solution is available. But — suppose the exact solution was not available. I illustrate a

numerical approach.

In[116]:= NUMERICALSOLUTION = Flatten /@ Table[{ϵ, x /. NSolve[w4[1], x]}, {ϵ, 0, 1, 0.1}]

Out[116]= {{0., -1., 1.}, {0.1, -1.10499, 0.904988}, {0.2, -1.2198, 0.819804},

{0.3, -1.34403, 0.744031}, {0.4, -1.47703, 0.677033},

{0.5, -1.61803, 0.618034}, {0.6, -1.76619, 0.56619}, {0.7, -1.92066, 0.520656},

{0.8, -2.08062, 0.480625}, {0.9, -2.24536, 0.445362}, {1., -2.41421, 0.414214}}

where, in this case the equation is a polynomial and NSolve can be used. If the equation was transcen-

dental, I would use FindRoot.

The perturbation solution is

In[117]:= Clear[RootPerturbation];

RootPerturbation[ϵ_, x0_] := -ϵ +
ϵ2

2 x0
+ x0

Then

20 Some Perturbation Problems 02-08-17.nb

copyright © N T Gladd 2016

In[119]:= Module[{root, ϵMax, x0, lab},

lab = Stl@StringForm[

"solutions of ``\nnumerical (solid) 2nd order perturbation (dashed)",

TraditionalForm[w4[1]]];

ϵMax = NUMERICALSOLUTION 〚-1, 1〛;

root[1] = Interpolation@NUMERICALSOLUTION 〚All, {1, 2}〛;

root[2] = Interpolation@NUMERICALSOLUTION 〚All, {1, 3}〛;

x0[1] = 1; x0[2] = -1;

Plot[{root[1][ϵ], RootPerturbation[ϵ, x0[1]],

root[2][ϵ], RootPerturbation[ϵ, x0[2]]}, {ϵ, 0, ϵMax},

PlotStyle → {Black, Directive[Black, Dashed]}, AxesLabel → {Stl[ϵ], "root"},

PlotLabel → lab]]

Out[119]=
0.2 0.4 0.6 0.8 1.0

ϵ

-2.5

-2.0

-1.5

-1.0

-0.5

0.5

1.0

root

solutions of x2 +2 ϵ x-1  0

numerical (solid) 2nd order perturbation (dashed)

Agreement is quite good, even for ϵ of order 1.

5 A problem for which iteration is preferred
Hinch 1.4 considers the transcendental equation

In[120]:= w5[1] = x Exp[-x] ⩵ ϵ

Out[120]= ⅇ-x x ⩵ ϵ

I visualize the location of roots using

Some Perturbation Problems 02-08-17.nb 21

copyright © N T Gladd 2016

In[121]:= Module[{f, root, line, points},

f[x_, ϵ_] := x Exp[-x] - ϵ;

root[1] = With[{xGuess = 0.01}, FindRoot[f[x, 0.01] ⩵ 0, {x, xGuess}]]〚1, 2〛 ;

root[2] = With[{xGuess = 5}, FindRoot[f[x, 0.01] ⩵ 0, {x, xGuess}]]〚1, 2〛;

points =

{PointSize[0.02], Red, Point[{Log@root[1], 0}], Point[{Log@root[2], 0}]};

line = {Directive[Black, Dashed], Line[{{-Log[0.01], 0}, {-Log[0.01], 1}}] };

LogLinearPlot[{f[x, 0], f[x, 0.01]}, {x, 0, 8},

PlotStyle → {Black, Blue}, Epilog → {line, points},

AxesLabel → {Stl["x"], Stl["f[x, ϵ]"]}, PlotLegends → {"ϵ = 0", "ϵ = 0.01"}]]

Out[121]=

0.01 0.05 0.10 0.50 1 5
x

0.1

0.2

0.3

f[x, ϵ]

ϵ = 0

ϵ = 0.01

Hinch suggests an iteration scheme appropriate for the root at large x

In[122]:= w5[2] = MapEqn[(# / x) &, w5[1]]

Out[122]= ⅇ-x ⩵
ϵ

x

In[123]:= w5[3] = MapEqn[(-Log[#]) &, w5[2]] // PowerExpand

Out[123]= x ⩵ Log[x] - Log[ϵ]

In[124]:= w5[4] = w5[3]〚1〛 /. x → xn+1 ⩵ w5[3]〚2〛 /. x → xn

Out[124]= x1+n ⩵ -Log[ϵ] + Log[xn]

The lowest order approximation is

In[125]:= w5[5] = x0 ⩵ -Log[ϵ]

Out[125]= x0 ⩵ -Log[ϵ]

To first order

22 Some Perturbation Problems 02-08-17.nb

copyright © N T Gladd 2016

In[126]:= w5[6] = w5[4] /. n → 0 /. (w5[5] // ER)

Out[126]= x1 ⩵ -Log[ϵ] + Log[-Log[ϵ]]

and 2rd order

In[127]:= w5[7] = w5[4] /. n → 1 /. (w5[6] // ER)

Out[127]= x2 ⩵ -Log[ϵ] + Log[-Log[ϵ] + Log[-Log[ϵ]]]

Hinch makes the point that this would not have been an easy expansion to guess.

In[128]:= Clear[RootOrder1, RootOrder2];

RootOrder1[ϵ_] := -Log[ϵ] + Log[-Log[ϵ]];

RootOrder2[ϵ_] := -Log[ϵ] + Log[-Log[ϵ] + Log[-Log[ϵ]]];

In[131]:= Module[{f, fRoot, rootNumerical},

f[x_, ϵ_] := x Exp[-x] - ϵ;

fRoot[ϵ_] := FindRoot[f[x, ϵ] ⩵ 0, {x, -Log[ϵ]}]〚1, 2〛 ;

rootNumerical = Interpolation@Table[{ϵ, fRoot[ϵ]}, {ϵ, 0.1, 0.001, -0.001}];

Plot[{rootNumerical[ϵ], RootOrder1[ϵ], RootOrder2[ϵ]},

{ϵ, 0.001, 0.1}, PlotStyle → {Black, Blue, Green},

PlotLegends → {"numerical", "iteration 1", "iteration 2"},

AxesLabel → {Stl["ϵ"], Stl["xroot"] }]]

Out[131]=

0.02 0.04 0.06 0.08 0.10
ϵ

4

5

6

7

8

9

xroot

numerical

iteration 1

iteration 2

Hinch also makes the point that quite small values of ϵ are required to achieve high accuracy

Some Perturbation Problems 02-08-17.nb 23

copyright © N T Gladd 2016

