TB 13.10 Cavitation 01-24-18

N. T. Gladd

Initialization: Be sure the file *NTGUtilityFunctions.m* is in the same directory as that from which this notebook was loaded. Then execute the cell immediately below by mousing left on the cell bar to the right of that cell and then typing "shift" + "enter". Respond "Yes" in response to the query to evaluate initialization cells.

```
SetDirectory[NotebookDirectory[]];
(* set directory where source files are located *)
Get["NTGUtilityFunctions.m"]; (* Load utilities package *)
```

Purpose

This is the 5th in a series of notebooks in which I work through material and exercises in the magisterial new book *Modern Classical Physics* by Kip S. Thorne and Roger D. Blandford. If you are a physicist of any ilk, BUY THIS BOOK. You will learn from a close reading and from solving the exercises.

Analysis and solution

This problem is a simple application of the invariance of the Bernoulli constant along a stream line. Cavitation will occur if the pressure at point B is less than the vapor pressure of water.

In this context, the Bernoulli constant is

$$B = \frac{V^2}{2} + h + \Phi = \frac{V^2}{2} + u + \frac{P}{\rho} + \Phi$$
$$w[1] = \frac{VA^2}{2} + uA + \frac{PA}{\rho A} + \Phi A = \frac{VB^2}{2} + uB + \frac{PB}{\rho B} + \Phi B$$
$$uA + \frac{VA^2}{2} + \frac{PA}{\rho A} + \Phi A = uB + \frac{VB^2}{2} + \frac{PB}{\rho B} + \Phi B$$

The water is incompressible and the internal energy of the water is unchanged near the hydrofoil

$$w[2] = w[1] /. uB \rightarrow uA /. \rhoB \rightarrow \rho /. \rhoA \rightarrow \rho /. \PhiA \rightarrow \rhogd /. \PhiB \rightarrow \rhog(d - w/2)$$
$$uA + \frac{VA^{2}}{2} + \frac{PA}{\rho} + dg\rho = uA + \frac{VB^{2}}{2} + \frac{PB}{\rho} + g(d - \frac{w}{2})\rho$$

where w is the assumed height of the hydrofoil. Away from the hydrofoil, the flow velocity is zero. Also, since the size of the hydrofoil was not provided in the problem statement, it can be assumed that w << d.

w[3] = w[2] /. VA
$$\rightarrow$$
 0 /. w \rightarrow 0
uA + $\frac{PA}{\rho}$ + d g ρ == uA + $\frac{VB^2}{2}$ + $\frac{PB}{\rho}$ + d g ρ

w[4] = Solve[w[3], PB][1, 1] PB $\rightarrow \frac{1}{2} \left(2 \text{ PA} - \text{VB}^2 \rho \right)$

Introduce the pressure at A

w[5] = w[4] /. PA
$$\rightarrow \rho g d$$
 /. Rule \rightarrow Equal
PB = $\frac{1}{2} (2 d g \rho - VB^2 \rho)$

Cavitation occurs when PB becomes less than the vapor pressure of the water at point B

w[6] = Solve[w[5] /. PB
$$\rightarrow$$
 PV, VB][2, 1] /. Rule \rightarrow Equal
VB = $\frac{\sqrt{2} \sqrt{-PV + d g \rho}}{\sqrt{\rho}}$

Vapour pressure of water (0–100 °C) ^[1]								
	<i>T</i> , °C	<i>T</i> , °F	<i>P</i> , kPa	P, torr	<i>P</i> , atm			
	0	32	0.6113	4.5851	0.0060			
	5	41	0.8726	6.5450	0.0086			
	10	50	1.2281	9.2115	0.0121			
	15	59	1.7056	12.7931	0.0168			
	20	68	2.3388	17.5424	0.0231			
	25	77	3.1690	23.7695	0.0313			
	30	86	4.2455	31.8439	0.0419			
_	35	95	5.6267	42.2037	0.0555			

From the web I find https://en.wikipedia.org/wiki/Vapour_pressure_of_water

and choose the representative value PV = 10 torr https://en.wikipedia.org/wiki/Torr#Conversion_factors

Pressure units									
V·T·E	Pascal	Bar	Technical atmosphere	Standard atmosphere	Torr	Pounds per square inch (psi)			
	(Pa)	(bar)	(at)	(atm)	(Torr)				
1 Pa	≡ 1 N /m ²	10 ⁻⁵	1.0197 × 10 ⁻⁵	9.8692 × 10 ⁻⁶	7.5006 × 10 ⁻³	1.450 377 × 10 ⁻⁴			
1 bar	10 ⁵	≡ 100 kPa ≡ 10 ⁶ dyn/cm ²	1.0197	0.986 92	750.06	14.503 77			
1 at	$9.806~65 \times 10^4$	0.980 665	≡ 1 kp/cm ²	0.967 8411	735.5592	14.223 34			
1 atm	1.01325×10^5	1.013 25	1.0332	1	≡ 760	14.695 95			
1 Torr	133.3224	1.333 224 × 10 ⁻³	1.359 551 × 10 ^{−3}	≡ 1/760 ≈ 1.315 789 × 10 ⁻³	≡ 1 Torr ≈ 1 mmHg	1.933 678 × 10 ⁻²			
1 psi	6.8948 × 10 ³	6.8948 × 10 ⁻²	7.030 69 × 10 ⁻²	6.8046 × 10 ⁻²	51.714 93	≡ 1 lbf /in ²			

 $\begin{aligned} &\text{Module} \Big[\Big\{ g = 9.8 \, \text{m} \, / \, \text{s}^2, \, d = 3 \, \text{m}, \, \rho = 1 \, \text{gm} \, / \, \text{cm}^3, \, \text{PV} = 10 \, \text{torr} \Big\}, \\ &\text{VB} = \frac{\sqrt{2} \, \sqrt{-\text{PV} + d \, g \, \rho}}{\sqrt{\rho}} \, / \, . \\ & \left\{ g \text{m} \rightarrow \text{kg} \, / \, 1000, \, \text{cm} \rightarrow \text{m} \, / \, 100, \, \text{torr} \rightarrow 133 \, \left(\text{nt} \, / \, \text{m}^2 \right) \, / \, . \, \text{nt} \rightarrow \text{kg} \, \text{m} \, / \, \text{s}^2 \, \Big\}; \\ &\text{VB} = \text{Simplify} [\text{VB}, \, \{\text{m} > 0, \, \text{kg} > 0, \, \text{s} > 0 \}]; \\ & \left\{ \text{VB}, \, \text{VB} \, / \, . \, \left\{ \, \text{m} \rightarrow \text{km} \, / \, 1000, \, \text{s} \rightarrow \text{hr} \, / \, 3600 \right\} \, / \, . \, \, \text{km} \rightarrow 0.632 \, \text{mi} \, \right\} \Big] \\ & \left\{ \frac{7.49266 \, \text{m}}{\text{s}}, \, \frac{17.0473 \, \text{mi}}{\text{hr}} \right\} \end{aligned}$

Cavitation begins at approximately 17 mi/hr.

Visualization

```
Module[{xS = -5, xF = 5, d = -3, dLine, VVector, range, surface, ellipsoid, lab,
  streamlineArrows, markers, FStream, StreamlineMarker, StreamlineArrow, G},
 range = {{xS, xF}, {-5, 0}};
 dLine = {Gray, Line[{{0,0}, {0,d}}], Text[St1["d"], {-0.2, d/2}]};
 VVector = {Black, Arrow[{{0, d}, {-1, d}}], Text[Stl["V"], {-0.5, d - 0.25}]};
 surface = {Directive[Blue, Thickness[0.03]], Line[{{xS, 0}, {xF, 0}}];
 ellipsoid = {Gray, Ellipsoid[{0, d}, {2, 0.8}]};
 lab = Stl["Schematic representation of hydrofoil and a streamline"];
 (* Not a real streamline. Just a
  function with the approximate shape of a streamline. *)
 FStream[x ] := d + Sech[x]<sup>1/2</sup>;
 StreamlineArrow[x_, \delta_{-}] := Arrow[{{x, FStream[x]}, {x + \delta, FStream[x + \delta]}};
 StreamlineMarker[lab_, x_, \delta_] :=
  {Black, Point[{}], Text[Style[lab], {x, FStream[x]} + {\delta, \delta}]};
 streamlineArrows = {Arrowheads[0.05],
   StreamlineArrow[-3, 0.5], StreamlineArrow[3, 0.5]};
 markers = {Black, StreamlineMarker["A", -4.5, 0.2], StreamlineMarker["B", 0, 0.2]};
 G[1] =
  Plot[FStream[x], \{x, xS, xF\}, Axes \rightarrow None, PlotRange \rightarrow range, PlotLabel \rightarrow lab];
 G[2] = Graphics[{surface, ellipsoid, dLine, markers, VVector, streamlineArrows},
   Axes \rightarrow None, PlotRange \rightarrow range];
 Show[G[1], G[2]]
      Schematic representation of hydrofoil and a streamline
                            в
```

References

Following the references given in the statement of the problem, I found a good discussion of the physics of this problem in my pdf copy of Batchelor, p 481. In addition, I found an excellent discussion of the TB problem *13.7 Hole in my bucket*, Section 6.3.1. I note that the key to most of the problems in the section

is the invocation of the constancy of the Bernoulli function along a streamline.

Videos demonstrating cavitation are https://www.youtube.com/watch?v=ON_irzFAU9c https://www.youtube.com/watch?v=U-uUYCFDTrc Lots of detail https://www.youtube.com/watch?v=K_w3gcvA87I Illustrations of hydrofoils https://www.youtube.com/watch?v=K_w3gcvA87I Delightful old video with several examples of cavitation and the underlying physics.

Caltech lecture https://core.ac.uk/download/pdf/4893014.pdf

Recent thesis on cavitation (lots of refs) file:///C:/Users/NTG/Downloads/mscThesis_GJMeijn_220915%20(1).pdf

Text on cavitation Brennen - Cavitation and Bubble Dynamics (I have the pdf)