TB I3-I9 Pulsatile Blood Flow 4-3-I8

N. T. Gladd

Initialization: Be sure the file NTGUtilityFunctions.m is in the same directory as that from which this notebook was loaded. Then execute the cell immediately below by mousing left on the cell bar to the right of that cell and then typing "shift" + "enter". Respond "Yes" in response to the query to evaluate initialization cells.

```
SetDirectory[NotebookDirectory[]];
(* set directory where source files are located *)
Get["NTGUtilityFunctions.m"]; (* Load utilities package *)
```


Purpose

This is the 12th in a series of notebooks in which I work through material and exercises in the magisterial new book Modern Classical Physics by Kip S. Thorne and Roger D. Blandford. If you are a physicist of any ilk, BUY THIS BOOK. You will learn from a close reading and from solving the exercises.

For what range of ω do you expect the ω dependence of v to be approximately
poiseuille [Eq. (13.80)], and what $\bar{\sigma}$ dependence do you expect in the opposite
atreme, and why?
By solving the Navier-Stokes equation for the frequency- ω component, which
is driven by the pressure-gradient term $d P / d z=\Re\left(P_{\omega}^{\prime} e^{-i \omega t}\right)$, and by imposing
appropriate boundary conditions at $\varpi=0$ and $\varpi=a$, show that

$$
v=\Re\left[\frac{P_{\omega}^{\prime} e^{-i \omega t}}{i \omega \rho}\left(1-\frac{J_{0}(\sqrt{i} W \omega / a)}{J_{0}(\sqrt{i} W)}\right)\right] .
$$

Here \Re means take the real $\quad: a$ is the artery's radius, J_{0} is the Bessel function, i is $\sqrt{-1}$, and $W \equiv \sqrt{\omega a^{2} / \nu}$ is called the (dimensionless) Womersley number.
Plot the pieces of this $v(\varpi)$ that are in phase and out of phase with the driving
pressure gradient. Compare with the prediction you made in part (b). Explain
the phasing physically. Notice that in the extreme non-Poiseuille regime, there
is a boundary layer attached to the artery's wall, with sharply changing flow
velocity. What is its thickness in terms of a and the Womersley number? We study
boundary layers like this one in Sec. 14.4 and especially Ex. 14.18.

I will solve this problem in the context of a model for blood flow through an artery.

Consider Navier-Stokes equation with gravity assumed negligible

$$
\begin{equation*}
\frac{\partial \boldsymbol{v}}{\partial t}+(\boldsymbol{v} \cdot \nabla) \cdot \boldsymbol{v}=-\frac{\nabla P}{\rho}+\frac{1}{\rho} \frac{\partial \sigma_{\mathrm{ik}}}{\partial x_{k}} \tag{1}
\end{equation*}
$$

For incompressible flow, this can be written

$$
\begin{equation*}
\frac{\partial v}{\partial t}+(v \cdot \nabla) \cdot v=-\frac{\nabla P}{\rho}+\alpha \nabla^{2} v \tag{2}
\end{equation*}
$$

where I use $\alpha=\eta / \rho$ to represent the kinetic viscosity. The Mathematica font for "nu" looks too much like "vee".
For laminar flow in the z-direction, $v=v(r) \mathbb{1}_{z}$

$$
\begin{equation*}
\frac{\partial v_{z}(r, t)}{\partial t}=-\frac{1}{\rho} \frac{\partial P(z, t)}{\partial z}+v \nabla^{2} v_{z}(r, t) \tag{3}
\end{equation*}
$$

because $(\mathbf{v} \cdot \nabla) \cdot \mathbf{v}=v_{z}(r) \partial / \partial z v_{z}(r)=0$
This is the equation called for in part (a) of TB exercise (13.19)

In general, the time-dependence of pressure gradient term that drives the flow is modeled by a Fourier series with ω_{0} being the frequency of a heart beat.

$$
\begin{equation*}
\frac{1}{\rho} \frac{\partial P(r, t)}{\partial z} \equiv \mathcal{P} \sum_{k=0}^{n} \epsilon_{n} e^{i k \omega_{0} t} \tag{4}
\end{equation*}
$$

The $\mathrm{k}=0$ term corresponds to a time-independent pressure driver. This is the explanation sought in part (b) of exercise TB13-19.

Note

```
Laplacian[f[R], \{R, \(\theta, z\}\), "Cylindrical"]
\(\frac{f^{\prime}[R]}{R}+f^{\prime \prime}[R]\)
```

So the pde to be solved is

$$
\begin{equation*}
\frac{\partial v_{z}(r, t)}{\partial t}=-\mathcal{P} \sum_{k=0}^{n} \epsilon_{n} e^{i n \omega t}+\alpha\left(\frac{1}{r} \frac{\partial v_{z}(r, t)}{\partial r}+\frac{\partial^{2} v_{z}(r, t)}{\partial r^{2}}\right) \tag{5}
\end{equation*}
$$

$$
\begin{aligned}
& w[1]=D[v z[r, t], t]=-\mathcal{P} \text { Inactivate[Sum }]\left[\epsilon_{k} \operatorname{Exp}\left[I k \omega_{\theta} t\right],\{k, 0, n\}\right]+ \\
& \quad v\left(\frac{D[v z[r, t], r]}{r}+D[v z[r, t],\{r, 2\}]\right) \\
& v z^{(\theta, 1)}[r, t]=-\mathcal{P} \sum_{k=\theta}^{n} e^{i k t \omega_{\theta}} \epsilon_{k}+v\left(\frac{v z^{(1, \theta)}[r, t]}{r}+v z^{(2, \theta)}[r, t]\right)
\end{aligned}
$$

Like all good physicists, I seek a dimensionless form

```
w[2] = w[1] /. vz -> Function[{r, t}, v0 v[r/a, t/t0]]
v0\mp@subsup{V}{}{(0,1)}[\frac{r}{a},\frac{t}{t0}]
```

The natural scale length is the radius of of an artery, a

```
w[3] = w[2] /. r ->aR /. t -> T t0
v0 V (0,1)[R,T]
```

$$
\begin{aligned}
& w[4]=\operatorname{MapEqn}[(\# t 0 / v 0) \&, w[3]] / / \text { ExpandAll } \\
& V^{(0,1)}[R, T]=-\frac{t 0 \rho \sum_{k=0}^{n} \mathbb{e}^{i k T t \theta \omega_{\theta}} \epsilon_{k}}{v 0}+\frac{t 0 \vee V^{(1,0)}[R, T]}{a^{2} R}+\frac{t 0 \vee V^{(2,0)}[R, T]}{a^{2}}
\end{aligned}
$$

Choose the the time scale to be the diffusion time across the arterial radius

$$
\begin{aligned}
& \operatorname{def}[t 0]=\frac{t 0 v}{a^{2}}=1 \\
& \frac{t 0 v}{a^{2}}=1
\end{aligned}
$$

$w[5]=w[4] / . \operatorname{Sol}[\operatorname{def}[t 0], v]$
$V^{(\theta, 1)}[R, T]=-\frac{t 0 \rho \sum_{k=0}^{n} e^{i \mathrm{i} k T t \theta \omega_{\theta}} \epsilon_{k}}{v 0}+\frac{V^{(1, \theta)}[R, T]}{R}+V^{(2, \theta)}[R, T]$
Define a dimensionless flow speed

$$
\begin{aligned}
& \operatorname{def}[v 0]=\frac{\mathrm{t} 0 \mathcal{P}}{\mathrm{v} 0}=1 \\
& \frac{\mathrm{t} 0 \mathcal{P}}{\mathrm{v} 0}=1
\end{aligned}
$$

$w[6]=w[5] / . S o l[\operatorname{def}[v 0], v 0]$
$V^{(\theta, 1)}[R, T]=-\sum_{k=0}^{n} e^{i \mathrm{i} k T t \theta \omega_{\theta}} \epsilon_{k}+\frac{V^{(1, \theta)}[R, T]}{R}+V^{(2, \theta)}[R, T]$
The characteristic dimensionless oscillation frequency is defined

$$
\begin{aligned}
& \operatorname{def}[\Omega]=\Omega==\omega_{\theta} \text { to } \\
& \Omega==\mathrm{t} 0 \omega_{\theta}
\end{aligned}
$$

where $\Omega=1 /(2 \pi)$ is a canonical value corresponding to a pulse rate of $60 /$ minute.

$$
\begin{aligned}
& w[7]=w[6] / \text { Sol }\left[\operatorname{def}[\Omega], \omega_{0}\right] \\
& V^{(\theta, 1)}[R, T]=-\sum_{k=0}^{n} e^{i \mathrm{k} T \Omega} \epsilon_{k}+\frac{V^{(1,0)}[R, T]}{R}+V^{(2, \theta)}[R, T]
\end{aligned}
$$

This constitutes the starting equation for the analysis

Seek a solution having the form

$$
V(R, T)=V_{0}(R, t)+\sum_{k=0}^{n} \epsilon_{k} V_{k}(R) e^{i k \Omega T}
$$

Note that the $\mathrm{k}=0$ term corresponds to a constant driver

```
\(w[8]=w[7] / \cdot \sum_{k=0}^{n} e^{\dot{i k} T \Omega} \epsilon_{k} \rightarrow 1 / . V \rightarrow\) Function \(\left[\{R, T\}, V_{\theta}[R]\right]\)
\(0=-1+\frac{V_{\theta^{\prime}}[R]}{R}+V_{\theta}{ }^{\prime \prime}[R]\)
```

The solution of this equation corresponds to Poiseuille flow.

```
w[9] = DSolve[{w[8], V (1] == 0, V ('[0] == 0}, V ([R], R] [1, 1]
V}\mp@subsup{V}{0}{}[R]->\frac{1}{4}(-1+\mp@subsup{R}{}{2}
```

For future use, I define the function

Clear [VPoiseuille];
VPoiseuille $\left[R_{-}\right]:=\frac{1}{4}\left(-1+R^{2}\right)$
The general oscillatory problem is solved by separation of variables, and the particular ansatz

$$
\begin{aligned}
& w[10]=w[7] / \cdot \sum_{k=0}^{n} e^{\dot{i} k T \Omega} \epsilon_{k} \rightarrow e^{\dot{i} k T \Omega} \epsilon_{k} / \cdot V \rightarrow \text { Function }\left[\{R, T\}, \epsilon_{k} V_{k}[R] \operatorname{Exp}[I k \Omega T]\right] \\
& i \underline{ } e^{i \dot{k} T \Omega} k \Omega \epsilon_{k} V_{k}[R]=-e^{\dot{i} k T \Omega} \epsilon_{k}+\frac{e^{i \mathrm{i} k T} \epsilon_{k} V_{k}^{\prime}[R]}{R}+e^{i \mathrm{k} T \Omega} \epsilon_{k} V_{k}{ }^{\prime \prime}[R]
\end{aligned}
$$

```
w[11] = MapEqn[(Simplify[#/(\epsilon (\epsilon Exp[IkT \Omega])]) &, w[10]]
ii k }\Omega\mp@subsup{V}{k}{}[R]==-1+\frac{\mp@subsup{V}{k}{\prime}[R]}{R}+\mp@subsup{V}{k}{\prime\prime}[R
```

The solution is

```
w[12] = DSolve[w[11], V [R], R][1, 1]
```


The condition that the solution be well behaved at $\mathrm{R}=0$ requires $\mathrm{C}[2]=0$

```
w[13] = w[12] /. C[2] -> 0
V}\mp@subsup{\textrm{V}}{\textrm{k}}{}[\textrm{R}]->\frac{\mathbb{i}}{\textrm{k}\Omega}+\operatorname{BesselJ}[0,(-1)\mp@subsup{)}{}{3/4}\sqrt{}{\textrm{k}}\textrm{R}\sqrt{}{\Omega}]\textrm{C}[1
```

The boundary condition is $V_{k}(\mathrm{R}=1)=0$

```
\(w[14]=(w[13] / / R E) / \cdot R \rightarrow 1 / \cdot V_{k}[1] \rightarrow 0\)
\(0=\frac{\dot{1}}{\mathrm{k} \Omega}+\operatorname{Bessel}\left[0,(-1)^{3 / 4} \sqrt{\mathrm{k}} \sqrt{\Omega}\right] \mathrm{C}[1]\)
```

Thus
Sol[w[14], C[1]]
$\mathrm{C}[1] \rightarrow-\frac{\mathrm{i}}{\mathrm{k} \Omega \operatorname{BesselJ}\left[0,(-1)^{3 / 4} \sqrt{\mathrm{k}} \sqrt{\Omega}\right]}$

```
w[15] = w[13] /. Sol[w[14], C[1]] // Simplify
V}\mp@subsup{V}{k}{}[R]->\frac{\dot{\mathbb{I}}(1-\frac{\operatorname{BesselJ}[0,(-1\mp@subsup{)}{}{3/4}\sqrt{}{k}R\sqrt{}{\Omega}]}{\operatorname{BesselJ}[0,(-1\mp@subsup{)}{}{3/4}\sqrt{}{k}\sqrt{}{\Omega}]})}{k
```

With less elucidation, the original ode could have been solved immediately

```
w[16] = DSolve[{w[11], V (1] == 0, Vk'[0] == 0}, Vk[R], R]\llbracket1, 1]
V
    (k\Omega BesselJ [0, (-1) 3/4}\sqrt{}{k}\sqrt{}{\Omega}]
```

To reduce the size of the expressions in the analysis to follow, I introduce the parameter

$$
\begin{aligned}
& \operatorname{def}[\beta]=\beta==(-1)^{3 / 4} \sqrt{k} \sqrt{\Omega} \\
& \beta==(-1)^{3 / 4} \sqrt{\mathrm{k}} \sqrt{\Omega}
\end{aligned}
$$

```
w[17] = w[16] /. Sol[def[\beta], \Omega] // PowerExpand // Expand // RE
V}\mp@subsup{V}{k}{}[R]==\frac{1}{\mp@subsup{\beta}{}{2}}-\frac{\operatorname{BesselJ}[0,R\beta]}{\mp@subsup{\beta}{}{2}\operatorname{BesselJ}[0,\beta]
```

$w[18]=w[17] \llbracket 1 \rrbracket==\operatorname{Collect}[w[17] \llbracket 2 \rrbracket, \beta]$
$V_{k}[R]=\frac{1-\frac{\operatorname{Bessel}[\theta, R \beta]}{\operatorname{Besselj}[\theta, \beta]}}{\beta^{2}}$

The solution will have a different character for large and small β

Note that for $\beta \lesssim 1$, the shape of the time-dependent flow is similar to that of Poiseuille. For $\beta \gg 1$ the time-dependent flow has a quite different shape.

The analytical limiting form for $\beta \ll 1$ is easily obtained with

$$
\begin{aligned}
& \mathrm{w}[19]=\text { Normal@Series }\left[\frac{\left(1-\frac{\operatorname{Bessel}[\rho[0, \mathrm{R} \beta]}{\operatorname{Bessel}[\theta, \beta]}\right)}{\beta^{2}},\{\beta, 0,1\}\right] \\
& \frac{1}{4}\left(-1+\mathrm{R}^{2}\right)
\end{aligned}
$$

The $\beta \gg 1$ limit requires a bit more care

$$
\begin{aligned}
& w[20]=\operatorname{Normal@Series}[(\text { Bessel }][0, x]),\{x, \infty, 0\}] \\
& \sqrt{\frac{2}{\pi}} \sqrt{\frac{1}{x}} \operatorname{Cos}\left[\frac{\pi}{4}-x\right]
\end{aligned}
$$

$$
\begin{aligned}
& w[21]=\frac{\left(1-\frac{\operatorname{Bessel} J[\theta, R \beta]}{\operatorname{Bessel}[0, \beta]}\right)}{\beta^{2}} / . \text { Bessell }\left[0, a_{-}\right] \rightarrow \sqrt{\frac{2}{\pi}} \sqrt{\frac{1}{a}} \operatorname{Cos}\left[\frac{\pi}{4}-a\right] / / \text { PowerExpand } \\
& \frac{1-\frac{\cos \left[\frac{\pi}{4}-R \beta\right] \sec \left[\frac{\pi}{4}-\beta\right]}{\sqrt{R}}}{\beta^{2}}
\end{aligned}
$$

$$
\text { Module }[\{\epsilon \mathrm{k}=1\},
$$

$$
\operatorname{Plot}\left[\left\{\operatorname{Re}\left[\frac{\left(1-\frac{\operatorname{BesselJ}[\theta, R \beta]}{\operatorname{Bessel}[0, \beta]}\right)}{\beta^{2}} / \cdot \beta \rightarrow 10\right], \operatorname{Re}\left[\frac{\left(1-\frac{\operatorname{Cos}\left[\frac{\pi}{4}-R \beta\right] \operatorname{Sec}\left[\frac{\pi}{4}-\beta\right]}{\sqrt{R}}\right)}{\beta^{2}} / \cdot \beta \rightarrow 10\right]\right\},\right.
$$

$$
\{R, 0,1\}, \text { PlotStyle } \rightarrow \text { \{Black, Directive[Red, Dashed]\}, }
$$

$$
\text { PlotLegends } \rightarrow\{\operatorname{Stl}[" \beta=10 \text { exact"], Stl[" } \beta=10 \text { approx"]\}, }
$$

$$
\text { AxesLabel } \rightarrow \text { \{Stl["R"], Stl["V }{ }_{k} \text { "]\}]] }
$$

The leading order approximation is quite good for $\beta=10$.
Exercise TB 13-19 (c) calls for determining the character of the flow as a function of frequency.

```
w[18]
V}\mp@subsup{V}{k}{[R]==
```

Consider the parameter β

```
def [ }\beta\mathrm{ ]
\beta== (-1)
```

Then

```
w[22] = def[\beta] /. Sol[def[\Omega], \Omega] /. Sol[def[t0], t0]
\beta==(-1)
```

The quantity W is known as the Womersley number
$\operatorname{def}[W]=W=\sqrt{\frac{a^{2} \omega_{0}}{v}}$
$W=\sqrt{\frac{a^{2} \omega_{0}}{v}}$

From http://wwwf.imperial.ac.uk/~ajm8/BioFluids/lec1114.pdf, I find a representative value of W appropriate for blood flow.

In a physiological context, α is known as the Womersley number, but similar parameters are well known in other contexts by other names.

In the aorta, with $a=0.015,2 \pi / \omega=1$ and $\nu=\mu / \rho=4 \times 10^{-6}$ we have

$$
\begin{aligned}
& \text { Module }\left[\left\{R=0.015 \mathrm{~m}, v=4 \times 10^{-6}\left(\mathrm{~m}^{2} \mathrm{~s}\right), \omega 0=(2 \pi) \mathrm{s}\right\}\right. \\
& \left.\sqrt{\frac{R^{2} \omega 0}{v}}\right]
\end{aligned}
$$

18.7997

So a representative value is $W=19$ and the $\beta \gg 1$ expansion is the relevant one for the present context of arterial flow. In more general contexts, this quantity is called the Strouhal number.

I use this information to consider a simplified form of V_{k}

```
w[23] = w[18] /. Sol[def[\beta], \beta] /. Sol[def[\Omega], \Omega]
V
```

As suggested in part (c), consider the frequency $\omega=k \omega_{0}$

```
w[24] = w[23] /. \omega}\mp@subsup{\omega}{0}{}->\omega/k// PowerExpan
V
```

Introduce the dimensionless parameter $f=\omega$ t0

```
w[25] = w[24] /. Sol[f == \omegat0, t0] // PowerExpand
V
```

```
Module \([\{\epsilon k=1, \omega 0=1 /(2 \pi), F\}\),
    F[x_, R_] :=
        \(\operatorname{Re}\left[\frac{\dot{\mathbf{i}}\left(1-\frac{\operatorname{BesselJ}\left[0, \frac{(1-i) \sqrt{f} \mathrm{R}}{\sqrt{2}}\right]}{\operatorname{BesselJ}\left[0, \frac{(1-i) \sqrt{f}}{\sqrt{2}}\right]}\right)}{f}\right] ;\)
    Plot[F[f, 0.1], \{f, 0.1, 20\},
    PlotRange \(\rightarrow\) All, AxesLabel \(\rightarrow\) \{Stl["f"], Stl["V \(\left.\left.\left.\left.\mathrm{V}_{\mathrm{k}}[\mathrm{R}=0.1] \mathrm{l}\right]\right\}\right]\right]\)
```


So - the answer to Exercise TB13-19 (3) is that the central flow is very similar to Poiseuille flow (order -0.25) for low frequency $\mathrm{f} \ll 1$ and quite different for $\mathrm{f} \gg 1$.

With regard to Exercise TB13-19 part (d), the desired result just requires some manipulation of previous results.
$V(R, T)=\sum_{k=0}^{n} \operatorname{Re}\left[V_{n}(R) e^{i k \Omega T}\right]=V_{0}+\sum_{k=1}^{n} \epsilon_{k} \operatorname{Re}\left[V_{n}(R) e^{i k \Omega T}\right]$

Recall
w[9] // RE
$V_{\theta}[R]=\frac{1}{4}\left(-1+R^{2}\right)$

Recall the previous results
$\mathbf{w [1 8]}$
$V_{k}[R]==\frac{1-\frac{\operatorname{BesselJ}[\theta, R \beta]}{\operatorname{BesselJ}[\theta, \beta]}}{\beta^{2}}$
w [22]
$\beta=(-1)^{3 / 4} \sqrt{k} \sqrt{\frac{a^{2} \omega_{0}}{v}}$

$$
\begin{aligned}
& \operatorname{def}[W] \\
& W==\sqrt{\frac{a^{2} \omega_{\theta}}{v}}
\end{aligned}
$$

Then
$w[26]=w[18] / . \operatorname{Sol}[\operatorname{def}[\beta], \beta] / . \operatorname{Sol}[\operatorname{def}[\Omega], \Omega] / . \operatorname{Sol}[\operatorname{def}[t 0], t 0] /$. Sol[def[W], a] // PowerExpand
$V_{k}[R]=\frac{\dot{i}\left(1-\frac{\operatorname{BesselJ}\left[0, \frac{(1-i) \sqrt{k} R W}{\sqrt{2}}\right]}{\operatorname{BesselJ}\left[0, \frac{(1-i) \sqrt{k} W}{\sqrt{2}}\right]}\right)}{k W^{2}}$
The combined solution is

$$
\begin{aligned}
& w[27]= \\
& \frac{1}{4}\left(-1+R^{2}\right)+\operatorname{Inactive}[S u m]\left[\operatorname{Re}\left[\frac{\dot{\mathbf{i}}\left(1-\frac{\operatorname{BesselJ}\left[\theta, \frac{(1-i) \sqrt{k} R w}{\sqrt{2}}\right]}{\operatorname{BesselJ}\left[\theta, \frac{1-i) \sqrt{k} w}{\sqrt{2}}\right]}\right)}{k W^{2}} \operatorname{Exp}\left[I k \omega_{\theta} t\right]\right],\{k, 1, n\}\right] \\
& \frac{1}{4}\left(-1+R^{2}\right)+\sum_{k=1}^{n}-\operatorname{Im}\left[\frac{e^{i k t \omega_{\theta}}\left(1-\frac{\operatorname{BesselJ}\left[\theta, \frac{(1-i) \sqrt{k} R W}{\sqrt{2}}\right]}{\operatorname{BesselJ}\left[\theta, \frac{(1-i) \sqrt{k} W}{\sqrt{2}}\right]}\right)}{k W^{2}}\right]
\end{aligned}
$$

which is equivalent to the result TB 13.85
For part (e) I construct

$$
\begin{aligned}
& \text { Clear [Vk, Pk]; } \\
& V k\left[R_{-}, t_{-}, k_{-}, \omega 0_{-}, W_{-}, \epsilon k_{-}\right]:= \\
& \operatorname{Re}\left[\frac{\dot{\text { i }}\left(1-\frac{\operatorname{BesselJ}\left[0, \frac{(1-i) \sqrt{k} R W}{\sqrt{2}}\right]}{\operatorname{BesselJ}\left[0, \frac{(1-i) \sqrt{k} w}{\sqrt{2}}\right]}\right) \epsilon k}{k W^{2}} \operatorname{Exp}[I k \omega \theta t]\right] ; \\
& \operatorname{Pk}\left[t_{-}, k_{-}, \omega \theta_{-}\right]:=\operatorname{Re}[\operatorname{Exp}[I k \omega 0 t]]
\end{aligned}
$$

When the Womersley number $W \ll 1$ (diffusion time is much longer than oscillation time), there is balance between the driving term and the viscous force. The velocity is in phase with the driving term.

When the Womersley number $\mathrm{W} \gg 1$ (diffusion time is much slower than oscillation time), there is
balance between the driving term and the inertial term. The velocity is out of phase with the driving term.

I consider the boundary layer that forms near the edge of an arterey when $\mathrm{W} \gg 1$

Consider the $\mathrm{T}=0$ flow.

$$
\begin{aligned}
& \mathbf{w}[\mathbf{2 6}]=\mathrm{Vk}[R, 0, k, \omega 0, W, \boldsymbol{\epsilon}] / / \mathbf{k} \rightarrow \mathbf{1} \\
& \in \mathrm{K}\left(1-\frac{\operatorname{Besselj}\left[0, \frac{(1-\mathrm{i}) \mathrm{Rw}}{\sqrt{2}}\right]}{\operatorname{BesselJ}\left[0, \frac{(1-\mathrm{i}) \mathrm{w}}{\sqrt{2}}\right]}\right) \\
& -\operatorname{Im}\left[\frac{W^{2}}{}\right]
\end{aligned}
$$

and focus on radial dependence

$$
\begin{aligned}
& w[27]=\left(1-\frac{\operatorname{Bessel}]\left[0, \frac{(1-\dot{i}) \mathrm{RW}}{\sqrt{2}}\right]}{\operatorname{Bessel}]\left[0, \frac{(1-\dot{i}) W}{\sqrt{2}}\right]}\right) \\
& 1-\frac{\operatorname{BesselJ}\left[0, \frac{(1-\dot{i}) \mathrm{RW}}{\sqrt{2}}\right]}{\operatorname{BesselJ}\left[0, \frac{(1-i) W}{\sqrt{2}}\right]}
\end{aligned}
$$

I have not previously considered analytical solutions of boundary layers in fluids so I will content myself with a geometrical/numerical answer to TB13-19 part (e). Later, I intend to return and obtain an analytical result.

I define a function to estimate the width of the boundary layer

```
Clear[FRadial, EstimateBoundaryLayerThickness];
```



```
(* I estimate the thickness of the boundary layer to be the half-
    width of the negative pulse near the edge of the artery. *)
EstimateBoundaryLayerThickness[W_, RMinGuess_] :=
    Module[{result, min, RVal, RHalfInner, RHalfOuter, \deltaBoundaryLayer, F},
        (* find minimum near R = 1 *)
        result = FindMinimum[{FRadial[R, W], 0.7 < R < 0.999}, {R, 0.95}];
        {min, RVal} = {result \llbracket1\rrbracket, result \llbracket2, 1, 2\rrbracket};
        (* find the Rinner value at which F = min/2 *)
        RHalfInner = FindRoot[FRadial[R,W] == min / 2, {R, RVal - 0.02}] \llbracket1, 2\rrbracket;
        (* find the Router value at which F = min/2 *)
    RHalfOuter = FindRoot[FRadial[R, W] == min / 2, {R, RVal + 0.02}] [1, 2\rrbracket;
        (* estimate \delta as Router - Rinner *)
    \deltaBoundaryLayer = RHalfOuter - RHalfInner]
```

I calculate $\delta(\mathrm{W})$ numerically and then obtain a functional fit

```
Module[{values, fit, valuesFit, aFit, bFit, lab},
    values = Table[{W, EstimateBoundaryLayerThickness[W, 0.95]}, {W, 10, 50, 5}];
    fit = FindFit[values, a Wb, {a, b}, W];
    valuesFit = Interpolation@Table[{W, a Wb}} /. fit, {W, 10, 50, 5}]
    lab = Stl@StringForm["fitting function = a x b a = `, b = `", a, b] /. fit;
    Plot[valuesFit[W], {W, 10, 50}, AxesLabel -> {Stl["W"], Stl["\delta"]},
        Epilog -> {Red, PointSize[0.02], Point /@ values}, PlotLabel -> lab]]
            fitting function =a x ba=2.47453,b=-1.02302
```


The numerical result strongly suggest $\delta \sim 1 / W$.

References

On pulsatile flow
https://www.youtube.com/watch?v=HFUSnqaFio0
https://www.youtube.com/watch?v=b029wRQnZwI\&list=PLbMVogVj5nJRsXU2WZyMTIDq6tPCjIQB3\&in dex=17
nice summary of solving inhomogeneous PDE using eigenfunction expansions https://www.youtube.com/watch?v=HoLweaiYG7g

Detailed analysis of Womersley flow https://www.google.com/search?q=womersley+flow\&oq=womersley\&aqs=chrome.1.69i57j015.5363j0j8\& sourceid=chrome\&ie=UTF-8

Wikipedia has a nice treatment of pulsatile flow https://en.wikipedia.org/wiki/Pulsatile_flow

Mathematica demonstration
http://demonstrations.wolfram.com/PulsatileFlowInACircularTube/

Nice physical pictures in the context of blood flow http://www.mate.tue.nl/people/vosse/docs/cardio.pdf

