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1 Introduction
The distinctive wave/wake pattern behind a moving ship is a familiar one and, remarkably, the pattern is

similar whether the moving object is a a ship at sea or a duck in a pond. The detailed physical-mathemat-

ical explanation of this phenomenon by Lord Kelvin, was a triumph of 19th century physics.

https://en.wikipedia.org/wiki/William_Thomson,_1st_Baron_Kelvin

This seminal  work by Lord Kelvin stimulated much further research and general  interest.  A Google

search just performed on “Kelvin ship waves”  generated 453000 hits.



Ship waves interest me too. Below, I use Mathematica to work through some classical analysis related

to these waves. Since the calculations are complicated and involve several approximations, the detailed

step-by-step sequence of results that Mathematica makes possible may be of interest to students and

nonspecialist researchers. 

I follow a procedure similar to Kelvin. Kelvin calculated the linear response of water to a point distur-

bance in deep water (imagine the ripples generated from a pebble dropped in water). He modeled a

ship as a moving point disturbance. The cumulative response observed behind a moving ship is the
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integral of the disturbances along the path of the ship. In general, waves will propagate radially outward

from each point  of  disturbance with different wave lengths and phase velocities.  A key point  in the

analysis is that an observer on the ship sees a wave pattern that is stationary in time.

The seminal document is On the waves produced by a single impulse in water of any depth, or in a

dispersive medium. Proceedings of the Royal Society of London, Ser. A. Vol. 42, 1887, pp. 80-85. Lord

Kelvin.

 

The history of the study of ship waves is complicated. I won’t attempt a review. I will generally follow the

treatment given in Chapter 8 of Water Waves: The Mathematical Theory with Applications, J. J. Stoker,

1957. Lord Kelvin is credited with inventing the method of stationary phase while working on this prob-

lem. In fact, in the course of the analysis, the method of stationary phase is invoked three times!  

 

The importance of  this  problem for  applied  mathematics  is  underscored by  the fact  that  the  cover

picture of The Princeton Companion to Applied Mathematics is an image of a Kelvin ship wave. 

In order to get quickly to the heart of the subject, I will start with a particular approximate formula for the

linear response of water to a point disturbance in deep water. Assuming that a ship can be modeled as

a moving version of  this  point  disturbance enables one to  deduce the characteristic  wave features

behind the ship. Insight is also gained into the detailed physics associated with the generation of the

wave pattern.

In a second section, I will derive the particular formula for the linear response from a more fundamental

result. This is a longish calculation involving a double integral that is both analytically and numerically

difficult. Along the way I will provide various visualizations that clarify aspects of the calculation.

Overall this is a calculation that, if you know where you are going, can be carried out with pen and

paper in 20 or 30 pages of calculation. However, it is easy to go astray. As I do with the notebooks on

this website I try to demonstrate that all of the substantive calculations can be carried out with Mathemat-

ica. 

I establish notation and geometry with the following figure. 

X

Y

O

P(X, Y)

S(Xs, Ys)

r
→

V
→

α

problem geometry

Figure 1 An observer on the ship at point O sees the disturbance initiated a time interval s earlier when the ship was at 
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S.

The ship moves along the X-axis in the negative direction at constant speed V. The analysis is per-

formed in the reference frame of the moving ship. The ship’s position is parameterized by the positive

quantity s. The point S denotes the position of the ship {Xs, Ys} = {Xs(s) = {V s, 0}. The point O denotes

the position of the ship when s = 0. Thus, the parameter s corresponds to the positive interval of time

required for the ship to move from S to O, while moving at constant speed V.  The point P(X, Y) is a

point being observed from O, when s = 0. The quantity r
→

is a vector from S to P and α is the angle

between the velocity vector of the ship and r
→

. 

The quantity of interest is the cumulative disturbance at P(X, Y)

δz(P) = 
0

smax

ds δz r
→
(s), s (1)

where δz is some infinitesimal change in the level of water and smax  is some arbitrary large interval

during which the ship has been moving and generating waves.  The basic  physical  model  for  ship-

generated waves is that of the waves generated from a point source. Another way of imagining the

model is  — an experimenter sits on a platform above still deep water that is flowing past with speed V.

The experimenter continuously drops pebbles into the water and observes the stationary wave pattern

that forms in the downstream flow of water.

The general linear response of water near the surface to an instantaneous point source is

δzinital value problem(r, t) = -
1

2 π ρ g

0

∞

dk k3/2 J0(k r) sin(ωk t)

ωk = k g

(2)

where g is the gravitational acceleration, ρ is the density of water, and J0(x) is a Bessel function of order

0. The wave frequency ωk  is appropriate for deep water (the derivation of the dispersion equation for

water  waves  is  presented  in  another  notebook).  The  integrand  of  this  expression  becomes  highly

oscillatory as k increases (product of two different oscillating functions each depending on k) and it’s

valuation  is  challenging  even using  computational  methods.  A  classic  reference for  equation  (2)  is

Hydrodynamics, Lamb, 1932 (still available as a Dover book).

In Section 2 below, the following approximate form for equation (2) will be calculated. 

δz(r, t) ≅
g t3

8 2 π ρ r4

sin
g t2

4 r
(3)

The objective of Section 1 is to evaluate and analyze the integral (1) with argument (3)

δz(P) = κ 
0

smax

ds
s3

r4
exp ⅈ

g s2

4 r
≡ κ 

0

smax

dsΨ(r, s) ⅇⅈΦ(r , s) (4)
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where κ is a constant and it is understood that it is the imaginary part of δz(r, t) that is physically rele-

vant. 

2 Calculation of δz(r, t)
The integrand of (4) is highly oscillatory and is calculated using the method of stationary phase. The

calculation not only produces an approximate value for δz(r, t), but also provides insight about the wave

pattern. I start by defining some functions for future convenience

Clear[Ψ, Φ];

Ψ[r_, s_] :=
s3

r4
;

Φ[r_, s_] :=
g s2

4 r
;

The constant phase condition, dΦ /dr = 0 results in a differential equation

w2[1] = Sol[D[Φ[r[s], s], s] ⩵ 0, r′[s]] // RE

r′[s] ⩵
2 r[s]

s

w2["st phase ode"] = w2[1]

r′[s] ⩵
2 r[s]

s

having the solution

w2[2] = DSolve[{w2[1], r[s0] ⩵ r0}, r[s], s]〚1, 1〛

r[s] →
r0 s2

s02

At this point, there is no natural scale length so I show Φ (r, s)  and the contours of constant Φ in nomi-

nal physical coordinates for g = 9.8 msec2
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Figure 2 Constant phase contours.

What does the stationary phase requirement imply in the context of the problem geometry? Note 

w2[3] = r[s] ⩵ XS[s] - X 2
+ YS[s]2

r[s] ⩵ -X + XS[s]2 + YS[s]2

For the assumed ship motion

w2[4] =

D[w2[3], s] /. XS′[s] → V /. YS′[s] → 0 /. 1  -X + XS[s]2 + YS[s]2 → 1  r[s]

r′[s] ⩵
V -X + XS[s]

r[s]

Recall that the ship is moving in the -X direction and so xS’(t) = - V. However, in this calculation the

positive interval of time s is being used as the “time-variable” and xS’(s) = + V. That is, the ship’s posi-

tion on the x-axis increases as s increases.  

This expression can be simplified

w2[5] = w2[4] /. SolXS[s] - X  r[s] ⩵ Cos[α[s]], XS[s]

r′[s] ⩵ V Cos[α[s]]

w2["st phase r ode"] = w2[5]
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r′[s] ⩵ V Cos[α[s]]

For future use, α’(s) will be needed. From Figure 1 and some trigonometry

w2[6] = Tan[α[s]] ==
Y

XS[s] - X
/. XS[s] → s V

Tan[α[s]] ⩵
Y

s V - X

w2[7] = MapEqn[D[#, s] &, w2[6]] /. Sol[w2[6], Y]

Sec[α[s]]2 α′[s] ⩵ -
V Tan[α[s]]

s V - X

w2[8] = Sol[w2[7], α
′
[s]] /. s V - X → r Cos[α[s]] /. r → r[s]

α′[s] → -
V Sin[α[s]]

r[s]

w2["st phase α ode"] = w2[8]

α′[s] → -
V Sin[α[s]]

r[s]

In terms of quantities that describe the ship motion, the stationary phase conditions implies

w2[9] = w2[1] /. w2[5] // ER

V Cos[α[s]] ⩵
2 r[s]

s

or

w2[10] = Sol[w2[9], r[s]] // RE

r[s] ⩵
1

2
s V Cos[α[s]]

w2["circle of influence"] = w2[10]

r[s] ⩵
1

2
s V Cos[α[s]]

This radius defines a “circle of influence.”  In the figure below, the points of the blue circle are the places

where the stationary phase condition is satisfied, and where an observable disturbance is expected.

Elsewhere, there are mixtures of oscillating waveforms that cancel each other. 
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The diameter of the circle is V s

2
 and the center of the circle is located at 3 V s

4
. The right panel shows a

sequence of circles of influence as s decreases and the ship approaches O. It is clear that the observ-

able disturbances are confined to a wedge behind the ship. Consider a line tangent to these circles: the

half-angle between that line and the x-Axis is the Kelvin angle θKelvin = sin-1(1/3). Famously, it is indepen

dent of the speed of the ship.

X

Y

O

S {V s, 0}
{
V s

2
, 0}

P

r
→

V s

4

Y

O

θKelvin = sin-1
1

3


Figure 3

I follow Stoker who used a geometric figure developed by Lamb to elucidate more physical insight into

the nature of the waves caused by the ship. 

X

Y

O

S

P

P/2

C1 C2 Q1 Q2

Figure 4 A circle centered at 3P/4 helps determine the influence points Q1, Q2

As before, the points O and S denote the position of the ship when s = 0 and s = s. The point P has

been chosen so that OP is orthogonal to PS. The gray circle is constructed and it’s intersections with x-

axis is calculated. There are either two points of intersection C1 and C2, or none at all. The points Q1

and Q2 are constructed so that C1P ⊥ Q1P and C2P ⊥ Q2P. These points are specific “influence points”

that give rise to different types of waves.

The next step is the calculate the phase fronts in the frame of Figure 1: to be specific, X = X(α), Y =

Y(α). From Figure 1

w2[11] = {XS - X ⩵ r Cos[α], Y ⩵ r Sin[α]}

{-X + XS ⩵ r Cos[α], Y ⩵ r Sin[α]}

The ship is located at V s
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w2[12] = w2[11] /. XS → V s

{s V - X ⩵ r Cos[α], Y ⩵ r Sin[α]}

Choose some reference value of the phase ϕ0 

w2[13] = ϕ0 ⩵ Φ[r, s]

ϕ0 ⩵
g s2

4 r

and recall the circle of influence equations

w2[14] = w2["circle of influence"] /. r[s] → r /. α[s] → α

r ⩵
1

2
s V Cos[α]

Solve the equations

{w2[12]〚1〛, w2[12]〚2〛, w2[13], w2[14] }

s V - X ⩵ r Cos[α], Y ⩵ r Sin[α], ϕ0 ⩵
g s2

4 r
, r ⩵

1

2
s V Cos[α]

w2[13] = Solve[{w2[12]〚1〛, w2[12]〚2〛, w2[13], w2[14] }, {X, Y, r, s}]〚1〛

X →
2 V2 ϕ0 Cos[α] - V2 ϕ0 Cos[α]3

g
,

Y →
V2 ϕ0 Cos[α]2 Sin[α]

g
, r →

V2 ϕ0 Cos[α]2

g
, s →

2 V ϕ0 Cos[α]

g


Notice that the following quantity has the dimensions of length

def[a0] = a0 ⩵ V2 ϕ0  g

a0 ⩵
V2 ϕ0

g

w2[14] = w2[13] /. Sol[def[a0], g] // Simplify

X → -a0 Cos[α] -2 + Cos[α]2, Y → a0 Cos[α]2 Sin[α], r → a0 Cos[α]2, s →
2 a0 Cos[α]

V


The specific quantities of interest are X(α) and Y(α)
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w2[15] = w2[14]〚1 ;; 2〛

X → -a0 Cos[α] -2 + Cos[α]2, Y → a0 Cos[α]2 Sin[α]

w2["phase fronts"] = w2[15]

X → -a0 Cos[α] -2 + Cos[α]2, Y → a0 Cos[α]2 Sin[α]

Define a parametric representation for the stationary phase curve characterized by phase value ϕ0 (or

length a0). 

Clear[ΦCurve];

ΦCurve[α_, a0_] := -a0 Cos[α] -2 + Cos[α]2
, a0 Cos[α]2 Sin[α]

I plot some representative curves along which the phase is stationary

X

Y

O

Figure 5 Stationary phase curves - a0 = 1 (black), a0 = 2 (blue), a0 = 3 (green)

The value of α for which Y(α) is maximum (the cusp) can be calculated
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w2[16] = Solve[D[ΦCurve[α, a]〚2〛 , α] ⩵ 0, α]

α → ConditionalExpression-
π

2
+ 2 π C[1], C[1] ∈ Integers,

α → ConditionalExpression
π

2
+ 2 π C[1], C[1] ∈ Integers,

α → ConditionalExpression-ArcTan
1

2
 + 2 π C[1], C[1] ∈ Integers,

α → ConditionalExpressionπ - ArcTan
1

2
 + 2 π C[1], C[1] ∈ Integers,

α → ConditionalExpressionArcTan
1

2
 + 2 π C[1], C[1] ∈ Integers,

α → ConditionalExpression-π + ArcTan
1

2
 + 2 π C[1], C[1] ∈ Integers

Specifically, for positive Y

w2[17] = w2[16]〚5, 1〛 /. C[1] → 0 /. α → αcusp

αcusp → ArcTan
1

2


w2["αCusp"] = w2[17]

αcusp → ArcTan
1

2


For α < αcusp = 0.615,  Y is increasing from 0 to its maximum value. For α > αcusp Y is decreasing back

to 0. 

Consider the point on Figure 4 where the blue curve intersects the green curve. It can be determined

numerically.

w2[18] = With[{a2 = 2, a3 = 3}, FindRoot[{ΦCurve[α1, a2]〚1〛 ⩵ ΦCurve[α2, a3]〚1〛,

ΦCurve[α1, a2]〚2〛 ⩵ ΦCurve[α2, a3]〚2〛}, {{α1, 0.615 - 0.2}, {α2, 0.615 + 0.2}}]]

{α1 → 0.192424, α2 → 1.19923}

where I have assisted the root finder by guessing α1 < αcusp and α2 > αcusp.

Next I construct the tangent to the green curve at the intersection point (the dashed green line). The

normal to green curve at the intersection point intersects the ship path at Q1. Similarly, the intersection

for the normal to the blue curve is Q2.
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O

P

Q1Q2

Figure 6

The points Q1and Q2 are the influence points for the disturbance at P — that is, the points along the

ship’s path that strongly influence the disturbance at point P. There is a contribution from a circular

wave packet emanating from Q1  and propagated primarily in the minus X-direction, forming an acute

angle with the ship’s motion. This is called the divergent wave. The second contribution propagates

outward from Q2 and is called the transverse wave. Recall that the observable part of a wave packet is

where the energy is concentrated, and that the energy concentration propagates with the group veloc-

ity. Clearly, the group velocity of the wave packet originating from Q1 is larger than the group velocity of

the wave packet originating from Q2. In the photographs above, both of these wave patterns can be

observed.

Returning to equation (4) for the linear response

δz(r, t) = κ 
0

Smax

ds
s3

r4
exp ⅈ

g s2

4 r
≡ κ 

0

Smax

dsΨ(r, s) ⅇⅈΦ(r , s)

≅ κΨ(rin, sin)
2π

Φ '' (rin, sin)
ⅇⅈΦ(rin, sin) ⅇⅈ sign(Φ'' (rin, sin)π/4)

(5)

where the second line is  the result  of  applying the stationary phase approximation.  The formula is

derived in Appendix C. 

The observable response at point P is the consequence of waves emanating from Q1 and Q2. For the

explicit stationary phase evaluation, it is more convenient to use r and α  as the variables. Thus

δz(r, t) ≅ κΨ(r2, α2)
2π

Φ '' (r2, α2)
ⅇⅈΦ(r2,α2) ⅇⅈ sign(Φ'' (r2,α2)π/4) +

(6)
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κΨ(r3, α3)
2π

Φ '' (r3, α3)
ⅇⅈΦ(r3,α3) ⅇⅈ sign(Φ'' (r3,α3)π/4)

Determining the explicit forms for the components of this equation requires a rather elaborate calcula-

tion performed in Appendix B.

Φ

[r[sP], sP] ⩵

g s Sec[α[s]]

2 V
,

Φ
(0,2)

[r[sP], sP] ⩵
g

2 r[s]
-
g Tan[α[s]]2

r[s]
, signΦ

(0,2)
[r[sP], sP] ⩵ α[s] < αCusp,

signΦ
(0,2)

[r[sP], sP] ⩵ -α[s] > αCusp // ColumnForm

Φ

[r[sP], sP] ⩵

g s Sec[α[s]]

2 V

Φ
(0,2)

[r[sP], sP] ⩵
g

2 r[s]
-

g Tan[α[s]]2

r[s]

signΦ
(0,2)

[r[sP], sP] ⩵ α[s] < αCusp

signΦ
(0,2)

[r[sP], sP] ⩵ -α[s] > αCusp

As illustrated in Appendix C, the method of stationary phase usually involves a formal large parameter.

In the calculations above, there is no such formal large parameter. However, Stoker introduces some

dimensionless variables

w2[19] = Φ[r, s] /. r → ℛ R0 /. s →  S0

g S02 2

4 R0 ℛ

where ℛ and  are dimensionless forms for space and time variation. The only natural scale length in

the problem is R0, namely the distance from O to P. There is no natural time scale but S0 can be

chosen such that R0/S0 = V, the speed of the ship. Then 

w2[20] = w2[19] /. S0 → R0  V

g R0 2

4 V2 ℛ

Defining the dimensionless parameter 

def[] =  ⩵
g R0

4 V2

 ⩵
g R0

4 V2
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w2[21] = Φ ⩵ w2[20] /. Sol[def[], g]

Φ ⩵
 2

ℛ

and it is clear that  >> 1 is required for the stationary phase approximation to be accurate. This corre-

sponds to an observation point P far from the ship. When looking at the wake close to a moving ship,

the waves, of course, are not stationary and the physics is much more complicated. The shape of the

ship is important, the method of propulsion is important, the existing distortion of the water is important,

and nonlinearities abound. 

Appendix A: Point disturbance in deep water (k integral)
In cylindrical coordinates, the linear response to a point disturbance at the surface of water, e.g, drop-

ping a pebble in a pond, is

Linear response to a point disturbance at the surface of a fluid (Stoker 6.4.23)

wA1[1] = δz[r, t] ⩵ -
1

2 π ρ g
Intkk3/2 J0[k r] Sin g k t

δz[r, t] ⩵ -
Intkk3/2 J0[k r] Sin g k t

2 g π ρ

where δz is the surface elevation, g is gravitational acceleration, ρ is density. This result is derived in

many places, e.g. Stoker Water Waves. Basically, it follows from solving the initial value problem for the

wave equation in cylindrical coordinates for a delta function source in space and time. 

The term Intk is a shorthand notation for an integral

Intk[ f(k)] ≡ 
0

∞

f(k) ⅆk

I  use Intk instead of Integrate because I want to perform manipulations without triggering the actual

process of integration. I prefer this simple notational device to Mathematica functions such as Hold or

Inactivate.

For  parameters  of  physical  interest,  the  integrand  becomes  highly  oscillatory.  I  illustrate  for  some

nominal physical parameters.
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Figure A1

This integral is evaluated using the method of stationary phase. In fact, Lord Kelvin (William Thompson)

developed that method of approximation while attacking this problem.

https://en.wikipedia.org/wiki/Stationary_phase_approximation

The classical form of integrals for which this approximation is appropriate is

I(k) =  dx g(x) e
I p f (x)

The idea is that the integrand is highly oscillatory except when the phase  f(x) is relatively “stationary”.

The point of stationary phase is the value of x for which f’(x) = 0, and the integral can be approximated

by restricting the range of integration to the region near the point of stationary phase. The accuracy

increases as p becomes are and the region of stationary phase is more sharply localized

I perform a series of transformation that cast wA1[1] into the classical form. The first step is to express

the Bessel  function in terms of an integral over trigonometric functions

wA1[2] = wA1[1] /. J0[k r] →
2

π
Intβ[Cos[k r cos[β]]]

δz[r, t] ⩵ -
1

2 g π ρ

Intk
1

π
2 k3/2 Intβ[Cos[k r cos[β]]] Sin g k t

where

Intβ[ f(β)] ≡ 
0

π/2
f(β) ⅆβ

Here Cos[β] = cos[β] has been introduced temporarily to facilitate future manipulations

Change the order of integration
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wA1[3] = wA1[2] /. a_ Intk[b_ Intβ[c_]] /; FreeQ[b, β] → a Intβ[Intk[b c]]

δz[r, t] ⩵ -
1

2 g π ρ

IntβIntk
1

π
2 k3/2 Cos[k r cos[β]] Sin g k t

wA1[4] = MapAll[TrigToExp, wA1[3]] // ExpandAll

δz[r, t] ⩵ -
1

2 g π ρ

IntβIntk
ⅈ ⅇ-ⅈ g k t-ⅈ k r cos[β] k3/2

2 π
-

ⅈ ⅇⅈ g k t-ⅈ k r cos[β] k3/2

2 π
+
ⅈ ⅇ-ⅈ g k t+ⅈ k r cos[β] k3/2

2 π
-
ⅈ ⅇⅈ g k t+ⅈ k r cos[β] k3/2

2 π


I need to manipulate the exponential terms. While the following works, there is probably a more elegant

procedure. 

wA1[5] = wA1[4] /. -ⅈ g k t - ⅈ k r cos[β] → -I argP[k, β] /.

ⅈ g k t + ⅈ k r cos[β] → I argP[k, β] /.

-ⅈ g k t + ⅈ k r cos[β] → -I argM[k, β] /. ⅈ g k t - ⅈ k r cos[β] → I argM[k, β]

δz[r, t] ⩵ -
1

2 g π ρ

IntβIntk
ⅈ ⅇ-ⅈ argM[k,β] k3/2

2 π
-
ⅈ ⅇⅈ argM[k,β] k3/2

2 π
+
ⅈ ⅇ-ⅈ argP[k,β] k3/2

2 π
-
ⅈ ⅇⅈ argP[k,β] k3/2

2 π


Note

Exp[I arg] - Exp[-I arg] ⩵ 2 I Im[Exp[I arg]] // ComplexExpand

True

So

wA1[6] =

wA1[5] /. Exp[-I argP[k, β]] → Exp[I argP[k, β]] - 2 I Im[Exp[I argP[k, β]]] /.

Exp[-I argM[k, β]] → Exp[I argM[k, β]] - 2 I Im[Exp[I argM[k, β]]] // ExpandAll

δz[r, t] ⩵ -
1

2 g π ρ

IntβIntk
k3/2 Imⅇⅈ argM[k,β]

π
+
k3/2 Imⅇⅈ argP[k,β]

π


To lessen the notational burden I shall  henceforth that only the imaginary part of the rhs should be

calculated 
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wA1[7] = wA1[6] /. Im[a_] → a

δz[r, t] ⩵ -
1

2 g π ρ

IntβIntk
ⅇⅈ argM[k,β] k3/2

π
+
ⅇⅈ argP[k,β] k3/2

π


I introduce some simplifying operations for the integral operators. It is tempting to define such evalua-

tion rules at the beginning of the calculation - but they evaluate immediately and interfere with some

replacement rules. 

Clear[Intk, Intβ];

Intk[a_ b_] /; FreeQ[a, k] := a Intk[b];

Intβ[a_ b_] /; FreeQ[a, β] := a Intβ[b];

Intk[a_ + b_] := Intk[a] + Intk[b];

Intβ[a_ + b_] := Intβ[a] + Intβ[b];

Back to the original notation. Also, since trigonometric manipulations are complete, the artificial form

cos[β] can be removed

wA1[8] =

wA1[7] /. argP[k, β] → g k t + k r cos[β] /. argM[k, β] → g k t - k r cos[β] /.

cos[a_] → Cos[a] // Expand

δz[r, t] ⩵

- IntβIntkⅇ
ⅈ g k t-k r Cos[β]

k3/2  2 g π2 ρ -
IntβIntkⅇ

ⅈ g k t+k r Cos[β]
k3/2

2 g π2 ρ

The inner IntK integrals now have the appropriate form for the method of stationary phase. Recall

Intk k3/2 ⅇ
ⅈ t g k -k r cos(β)

≡ 
0

∞

k3/2 ⅇ
ⅈ t g k -k r cos(β)

ⅆk

Note that there is no obvious large parameter p. I discuss this at the end of section 2.  

For the application at hand, g > 0, r > 0, t > 0, cos(β) ≥ 0. Only the first term has a point of stationary

phase.
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Module{g = 1, r = 1, t = 1, β = π / 4},

Plot g k t - k r Cos[β], g k t + k r Cos[β], {k, 0, 3},

PlotStyle → {Black, Blue}, AxesLabel → {Stl["k"], Stl["phases"]},

PlotLegends → Stl" g k t-k r Cos[β]", Stl" g k t+k r Cos[β]"

0.5 1.0 1.5 2.0 2.5 3.0
k

1

2

3

4

phases

g k t-k r Cos[β]

g k t+k r Cos[β]

After these preliminary manipulations, the double integral to be performed is

wA1[9] = wA1[8]〚1〛 == wA1[8]〚2, 1〛

δz[r, t] ⩵ -
IntβIntkⅇ

ⅈ g k t-k r Cos[β]
k3/2

2 g π2 ρ

w1A1["δz[r,t] as double integral"] = wA1[9]

δz[r, t] ⩵ -IntβIntkⅇⅈ  g k t-k r Cos[β] k3/2  2 g π2 ρ

It should be recalled that it is the imaginary part of the rhs that is physically relevant.

A1  Evaluation of the k-integral using method of stationary phase

The k-integral to be evaluated is

w1A1[1] = Intkⅇ
ⅈ  g k t-k r Cos[β]

k3/2 ≡ Intkⅇⅈ f[k] g[k]

Intkⅇ
ⅈ g k t-k r Cos[β]

k3/2 ≡ Intkⅇⅈ f[k] g[k]

I could just invoke a formula at this point (see Appendix C), but it is more instructive to work through the

details. Consider the rhs
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w1A1[2] = w1A1[1]〚2〛 /. f[k] → Normal@Series[f[k], {k, ks, 2}] /. f′[ks] → 0 /.

g[k] → g[ks]

g[ks] Intkⅇ
ⅈ f[ks]+

1

2
(k-ks)2 f′′[ks]



Make the sign of the quadratic term explicit

w1A1[3] = w1A1[2] /. f′′[ks] → S[f′′[ks]] A[f′′[ks]]

g[ks] Intkⅇ
ⅈ f[ks]+

1

2
(k-ks)2 A[f′′[ks]] S[f′′[ks]]



where I temporarily use A instead of Abs and S instead of Sign to simplify the expression resulting from

application of Integrate

Clear[Fk, Gk];

Fk[k_] := g k t - k r Cos[β];

Gk[k_] := k3/2;

w1A1[4] = Sol[D[Fk[k], k] ⩵ 0, k] /. k → ks

ks →
g t2 Sec[β]2

4 r2

w1A1[5] = f[ks] ⩵ SimplifyFk[ks] /. w1A1[4], g > 0, t > 0, r > 0, 0 < β < π  2

f[ks] ⩵
g t2 Sec[β]

4 r

w1A1[6] = f′′[ks] ==

SimplifyD[Fk[k], {k, 2}] /. k → ks /. w1A1[4], g > 0, t > 0, r > 0, 0 < β < π  2

f′′[ks] ⩵ -
2 r3 Cos[β]3

g t2
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Moduleg = 9.8 (*msec2*), β = π / 4, t = 15, r = 20, kMax = 10,

image = {400, 200}, ks, fks, d2fks, ksLine, lab, directives, G,

Fk[k_] := g k t - k r Cos[β];

Gk[k_] := k3/2;

ks =
g t2 Sec[β]2

4 r2
;

fks =
g t2 Sec[β]

4 r
;

d2fks = -
2 r3 Cos[β]3

g t2
;

ksLine = {Red, Line[{{ks, -1000}, {ks, 1000}}]} ;

lab = Stl@

StringForm["Approximation of f for nominal parameters\nt = ``sec r = ``m", t, r];

directives = {PlotStyle → {Black, Directive[Black, Dashed]},

AxesLabel → {Stl["k"], Stl[""] }, ImageSize → image};

G[1] = PlotFk[k], fks + d2fks
k - ks2

2
, {k, 0, kMax},

PlotLabel → lab, Epilog → ksLine, Evaluate@directives;

lab = Stl@StringForm"Im[ⅇⅈ f[k]] and its approximation";

G[2] = PlotIm[Exp[I Fk[k]]], ImExpI fks + d2fks
k - ks2

2
,

{k, 0, kMax}, PlotLabel → lab, Epilog → ksLine, Evaluate@directives;

Grid[{{G[1]}, {G[2]}}]


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k

-30

-20

-10

10

20

30

40

Approximation of f for nominal parameters

t = 15sec r = 20m

2 4 6 8 10
k

-1.0

-0.5

0.5

1.0

Im[ⅇⅈ f[k]] and its approximation

w1A1[7] = w1A1[3] /. Intk[a_] ⧴ Integrate[a, {k, -∞, ∞}]

ConditionalExpression
ⅇⅈ f[ks] 2 π g[ks]

-ⅈ A[f′′[ks]] S[f′′[ks]]
, Im[A[f′′[ks]] S[f′′[ks]]] > 0

w1A1[8] = Simplify[w1A1[7], Im[A[f′′[ks]] S[f′′[ks]]] > 0]

ⅇⅈ f[ks] 2 π g[ks]

-ⅈ A[f′′[ks]] S[f′′[ks]]

Note that

PolarForm1  -I 

ⅇ
ⅈ π

4

w1A1[9] = w1A1[8] /.
1

-ⅈ A[f′′[ks]] S[f′′[ks]]
→

ⅇ
ⅈ π

4
S[f′′[ks]]

A[f′′[ks]]

ⅇ
ⅈ f[ks]+

1

4
ⅈ π S[f′′[ks]]

2 π g[ks]

A[f′′[ks]]
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Then

w1A1[10] =

w1A1[9] /.  w1A1[5] // ER /.  w1A1[6] // ER /. g[ks] → Gk[ks] /. w1A1[4]

ⅇ
1

4
ⅈ π S-

2 r3 Cos[β]3

g t2
+

ⅈ g t2 Sec[β]

4 r
π

2

g t2 Sec[β]2

r2

3/2

 4 A-
2 r3 Cos[β]3

g t2


w1A1[11] = w1A1[10] /. A[a_] → Abs[a] /. S[a_] → Sign[a]

ⅇ

ⅈ g t2 Sec[β]

4 r
-
ⅈ π Sign[r]3 SignCos[β]3

4 Sign[g] Signt2 π
g t2 Sec[β]2

r2

3/2

 8 Abs
r3 Cos[β]3

g t2


w1A1[12] = Simplify[w1A1[11], {g > 0, r > 0, t > 0, β > 0, Cos[β] > 0, Sec[β] > 0}]

-
-13/4 ⅇ

ⅈ g t2 Sec[β]

4 r g2 π t4

8 r Cos[β]9/2

w1A1[13] = w1A1[12] /. -13/4 → PolarForm-13/4 // PowerExpand

-
ⅇ
-
ⅈ π

4
+
ⅈ g t2 Sec[β]

4 r g2 π t4

8 r9/2 Cos[β]9/2

Finally 

w1A1[14] = w1A1[1]〚1〛 ⩵ w1A1[13]

Intkⅇ
ⅈ g k t-k r Cos[β]

k3/2 ⩵ -
ⅇ
-
ⅈ π

4
+
ⅈ g t2 Sec[β]

4 r g2 π t4

8 r9/2 Cos[β]9/2

w1A1["k-integral"] = w1A1[14]

Intkⅇⅈ  g k t-k r Cos[β] k3/2 ⩵ -
ⅇ
-
ⅈ π

4
+
ⅈ g t2 Sec[β]

4 r g2 π t4

8 r9/2 Cos[β]9/2

A2  Evaluation of the β-integral using method of stationary phase

Recall the double integral form of δz and use the result of the previous section
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w1A2[1] = w1A1["δz[r,t] as double integral"] /. w1A1["k-integral"] // ER

δz[r, t] ⩵

g3/2 t4 Intβ ⅇ
-
ⅈ π

4
+
ⅈ g t2 Secβ

4 r

Cos[β]92


16 π3/2 r9/2 ρ

Simplifying

w1A2[2] = δz[r, t] ⩵

g3/2 t4 ⅇ
-
ⅈ π

4 Intβ ⅇ

ⅈ g t2 Secβ

4 r

Cos[β]92


16 π3/2 r9/2 ρ

δz[r, t] ⩵

ⅇ
-
ⅈ π

4 g3/2 t4 Intβ ⅇ

ⅈ g t2 Secβ

4 r

Cos[β]92


16 π3/2 r9/2 ρ

w1A2["δz[r,t] as single integral"] = w1A2[2]

δz[r, t] ⩵

ⅇ
-
ⅈ π

4 g3/2 t4 Intβ ⅇ

ⅈ g t2 Secβ

4 r

Cos[β]9/2


16 π3/2 r9/2 ρ

Focus on the integral

w1A2[3] = Intβ
ⅇ
ⅈ g t2 Sec[β]

4 r

Cos[β]9/2


Intβ
ⅇ

ⅈ g t2 Sec[β]

4 r

Cos[β]9/2


This already has the correct form for application of the method of stationary phase

w1A2[4] =

Intβⅇⅈ f[β] g[β] /. f[β] → Normal@Series[f[β], {β, βs, 2}] /. f′[βs] → 0 /.

g[β] → g[βs]

g[βs] Intβⅇ
ⅈ f[βs]+

1

2
(β-βs)2 f′′[βs]



I just reuse the formula derived in the previous section

w1A2[5] = w1A1[9] /. ks → βs

ⅇ
ⅈ f[βs]+

1

4
ⅈ π S[f′′[βs]]

2 π g[βs]

A[f′′[βs]]

Specifically
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Clear[Fβ, Gβ];

Fβ[β_] :=
g t2 Sec[β]

4 r
;

Gβ[β_] := 1  Cos[β]9/2;

w1A2[6] = Solve[D[Fβ[β], β] ⩵ 0, β]〚1, 1〛 /. β → β

β → ConditionalExpression[2 π C[1], C[1] ∈ Integers]

w1A2[7] = w1A2[6] /. C[1] → 0 /. β → βs

βs → 0

So

w1A2[8] =

 f[βs] → Fβ[βs] , g[βs] → Gβ[βs] , f′′[βs] → D[Fβ[β], {β, 2}] /. β → βs

f[βs] →
g t2 Sec[βs]

4 r
, g[βs] →

1

Cos[βs]9/2
, f′′[βs] →

g t2 Sec[βs]3 + Sec[βs] Tan[βs]2

4 r


At the stationary point

w1A2[9] = w1A2[8] /. w1A2[7]

f[0] →
g t2

4 r
, g[0] → 1, f′′[0] →

g t2

4 r


So

w1A2[10] =
1

2
w1A2[5] /. βs → 0 /. w1A2[9]

ⅇ
ⅈ g t2

4 r
+
1

4
ⅈ π S

g t2

4 r
 π

2

A g t2

4 r


where the factor 1/2 comes from the fact that the point of stationary phase occurs at βs = 0 occurs at

the endpoint of the integration range 0 < β < π/2 

w1A2[11] = w1A2[10] /. A → Abs /. S → Sign

ⅇ
ⅈ g t2

4 r
+
ⅈ π Sign[g] Signt2

4 Sign[r] 2 π

Abs g t2

r

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w1A2[12] = Simplify[w1A2[11], {g > 0, r > 0, t > 0}] // PowerExpand

1 + ⅈ ⅇ
ⅈ g t2

4 r π r

g t

w1A2[13] = w1A2[12] /. 1 + ⅈ → PolarForm[1 + I]

ⅇ
ⅈ π

4
+
ⅈ g t2

4 r 2 π r

g t

The calculation has resulted in 

w1A2[14] = w1A2[3] ⩵ w1A2[13]

Intβ
ⅇ

ⅈ g t2 Sec[β]

4 r

Cos[β]9/2
 ⩵

ⅇ
ⅈ π

4
+
ⅈ g t2

4 r 2 π r

g t

w1A2["β-integral"] = w1A2[14]

Intβ
ⅇ

ⅈ g t2 Sec[β]

4 r

Cos[β]9/2
 ⩵

ⅇ
ⅈ π

4
+
ⅈ g t2

4 r 2 π r

g t

Using this in the expression for δz results in 

w1A2["δz[r,t] as single integral"]

δz[r, t] ⩵

ⅇ
-
ⅈ π

4 g3/2 t4 Intβ ⅇ

ⅈ g t2 Secβ

4 r

Cos[β]92


16 π3/2 r9/2 ρ

w1A2[15] = w1A2["δz[r,t] as single integral"] /. w1A2["β-integral"] // ER

δz[r, t] ⩵
ⅇ

ⅈ g t2

4 r g t3

8 2 π r4 ρ

Recall that it is the imaginary part of this that is of physical interest

w1A2[16] = w1A2[15] // ExpToTrig

δz[r, t] ⩵

g t3 Cos g t2

4 r


8 2 π r4 ρ
+

ⅈ g t3 Sin g t2

4 r


8 2 π r4 ρ

After a long and winding path the result in Equation (2) has been derived.
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w1A2[17] = w1A2[16]〚1〛 ⩵ w1A2[16]〚2, 2〛 I

δz[r, t] ⩵

g t3 Sin g t2

4 r


8 2 π r4 ρ

w1A2["δz[r,t]"] = w1A2[17]

δz[r, t] ⩵

g t3 Sin g t2

4 r


8 2 π r4 ρ

I illustrate the spatial variation of this for some nominal parameters

Moduleg = 9.8 (*ms2*), rMin = 30, rMax = 150, tVal = 30, Φ, Ψ, legends, lab, G,

Φ[r_, t_] :=
g t2

4 r
;

Ψ[r_, t_] :=
t3

r4
;

RevolutionPlot3D[Ψ[r, tVal] Sin[Φ[r, tVal]],

{r, rMin, rMax}, PlotStyle → Lighter[Blue, 0.30],

Mesh → False, Axes → False, Boxed → False, PlotPoints → 200]

Appendix B:  Explicit expression for the s integral
Explicit forms for the terms in equation (6) are calculated.  For the stationary phase approximation the

following expansion was performed
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wB[1] =

Φ

[r, s] ⩵ NormalSeriesΦ


[r, s], {s, sP, 2} /. Φ

(0,1)
[r, sP] → 0 /. r → r[sP]

Φ

[r, s] ⩵ Φ


[r[sP], sP] +

1

2
(s - sP)2 Φ

(0,2)
[r[sP], sP]

where have used Φ  since Φ already has a function assignment in the notebook.

Recall from Section 2 that the stationary phase condition is 

wB[2] = w2["circle of influence"]

r[s] ⩵
1

2
s V Cos[α[s]]

Thus

wB[3] = Φ

[r[sP], sP] ⩵ Φ[r[s], s] /. wB[2] // ER

Φ

[r[sP], sP] ⩵

g s Sec[α[s]]

2 V

The second derivative requires some work 

wB[4] = Φ
(0,2)

[r[sP], sP] ⩵ D[Φ[r[s], s], {s, 2}]

Φ
(0,2)

[r[sP], sP] ⩵
1

4
g

2

r[s]
-
4 s r′[s]

r[s]2
+ s2

2 r′[s]2

r[s]3
-
r′′[s]

r[s]2

To evaluate this expression, recall 

w2["st phase ode"]

r′[s] ⩵
2 r[s]

s

w2["st phase r ode"]

r′[s] ⩵ V Cos[α[s]]

w2["st phase α ode"]

α′[s] → -
V Sin[α[s]]

r[s]
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wB[5] = wB[4] /. w2["st phase ode"] // ER // Expand

Φ
(0,2)

[r[sP], sP] ⩵
g

2 r[s]
-
g s2 r′′[s]

4 r[s]2

It remains to calculate the second derivative of r(s) along the path of stationary phase

wB[6] = MapEqn[D[#, s] &, w2["st phase r ode"]]

r′′[s] ⩵ -V Sin[α[s]] α′[s]

wB[7] = wB[6] /. w2["st phase α ode"]

r′′[s] ⩵
V2 Sin[α[s]]2

r[s]

or

wB[8] = MapEqn[(# / r[s]) &, wB[7]]

r′′[s]

r[s]
⩵

V2 Sin[α[s]]2

r[s]2

Make the rhs explicit

wB[9] = wB[8]〚1〛 ⩵ wB[8]〚2〛 /.  wB[2] // ER

r′′[s]

r[s]
⩵

4 Tan[α[s]]2

s2

Finally

wB[10] = wB[5] /. Sol[wB[9], r′′[s]]

Φ
(0,2)

[r[sP], sP] ⩵
g

2 r[s]
-
g Tan[α[s]]2

r[s]

The angular dependence is

wB[11] = 1 - 2 Tan[α]2

1 - 2 Tan[α]2

wB[12] = Solve[wB[11] ⩵ 0, α]〚2, 1〛 /. C[1] → 0 /. α → αcusp

αcusp → ArcTan
1

2

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This angle was encountered in Section 2 and was associated with the abrupt change of  phase front

geometry. 

ModuleαCusp = NArcTan
1

2
,

Plot1 - 2 Tan[α]2, {α, 0, 1}, AxesLabel → Stl["α"], Stl"Φ

",

Epilog → Line[{{αCusp, -10}, {αCusp, 10}}] 

0.2 0.4 0.6 0.8 1.0
α

-4

-3

-2

-1

1

Φ

Gather the results

wB"Φ


results" = wB[3], wB[10],

signΦ
(0,2)

[r[sP], sP] ⩵ α[s] < αCusp, signΦ
(0,2)

[r[sP], sP] ⩵ -α[s] > αCusp

Φ

[r[sP], sP] ⩵

g s Sec[α[s]]

2 V
, Φ
(0,2)

[r[sP], sP] ⩵
g

2 r[s]
-
g Tan[α[s]]2

r[s]
,

signΦ
(0,2)

[r[sP], sP] ⩵ α[s] < αCusp, signΦ
(0,2)

[r[sP], sP] ⩵ -α[s] > αCusp

Appendix C Derivation of Stationary Phase Formula
I present a quick derivation of the stationary phase approximation to illustrate one way the requisite

steps could be performed using Mathematica operations. A classical example is also considered

The canonical result for the method of stationary phase is

J = 
-∞

∞

dx ψ(x) ⅇⅈ p ϕ(x) ≃
2 π

k

ⅇⅈ k ϕ(x0) ⅇ
ⅈ π

4
sign(ϕ′′(x0))

ϕ′′(x0)

ψ(x0)

where x0 satisfies ϕ ' (x0) = 0

Define the integral
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wC[1] = J ⩵ Int[ψ[x] Ex[I p ϕ[x]]]

J ⩵ Int[Ex[ⅈ p ϕ[x]] ψ[x]]

where Int and Ex are non-evaluating versions of Integrate and Exp introduced for convenience

Expand ϕ about the stationary point x0

wC[2] = wC[1] /. ϕ[x] → Normal[Series[ϕ[x], {x, x0, 2}]] /. ψ[x] → ψ[x0]

J ⩵ IntExⅈ p ϕ[x0] + x - x0 ϕ′[x0] +
1

2
x - x02 ϕ′′[x0]  ψ[x0]

Impose the condition for stationarity

wC[3] = wC[2] /. ϕ
′
[x0] → 0

J ⩵ IntExⅈ p ϕ[x0] +
1

2
x - x02 ϕ′′[x0]  ψ[x0]

and perform some simplifying operations

wC[4] =

wC[3] /. Exⅈ k ϕ[x0] +
1

2
x - x02 ϕ′′[x0]  → Ex[I k ϕ[x0]] ExI k

1

2
x - x02 ϕ′′[x0]

J ⩵ IntExⅈ p ϕ[x0] +
1

2
x - x02 ϕ′′[x0]  ψ[x0]

wC[5] = wC[4] //. Int[a_ b_] /; FreeQ[a, x] → a Int[b]

J ⩵ IntExⅈ p ϕ[x0] +
1

2
x - x02 ϕ′′[x0]  ψ[x0]

Replace Int and Ex

temp = wC[5]〚2〛 /. Ex → Exp /. Int[a_] ⧴ Integrate[a, {x, -∞, ∞}]

ConditionalExpression
ⅇⅈ p ϕ[x0] 2 π ψ[x0]

-ⅈ p ϕ′′[x0]
, Im[p ϕ′′[x0]] > 0

wC[6] = wC[5]〚1〛 ⩵ Simplify[temp , Im[p ϕ′′[x0]] > 0]

J ⩵
ⅇⅈ p ϕ[x0] 2 π ψ[x0]

-ⅈ p ϕ′′[x0]

Note
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PolarForm1  -I 

ⅇ
ⅈ π

4

and make a simplifying substitution

wC[7] = wC[6] /. 1  -ⅈ p ϕ′′[x0] → Exp[I Sign[ ϕ′′[x0]] π / 4]   p Abs[ϕ′′[x0]] 

J ⩵
ⅇ

1

4
ⅈ π Sign[ϕ′′[x0]]+ⅈ p ϕ[x0]

2 π ψ[x0]

p Abs[ϕ′′[x0]]

which is the desired result.

A classic example for the method of stationary phase is the approximation of the Bessel function

J0 =
1

2 π

-π

π

dx ⅇⅈ p Sin[x]

Module[{p = 20},

Plot[{Re[Exp[I p Sin[x]]], Im[Exp[I p Sin[x]]]},

{x, -π, π}, PlotStyle → {Black, Directive[Black, Dashed]}]]

-3 -2 -1 1 2 3

-1.0

-0.5

0.5

1.0

For the integral J0 

Clear[ΦC, ΨC];

ΦC[x_] := Sin[x];

ΨC[x_] :=
1

2 π
;

There are two stationary points
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wC[8] = Solve[D[ΦC[x], x] ⩵ 0, x] /. C[1] → 0 /. x → x0

x0 → -
π

2
, x0 →

π

2


wC[9] = {ΦC[x], D[ΦC[x], {x, 2}]} /. x → x0

{Sin[x0], -Sin[x0]}

The contribution from the two stationary points are

wC[10] =

Simplify ⅇ
1

4
ⅈ π Sign[ϕ′′[x0]]+ⅈ p ϕ[x0]

2 π ψ[x0]   p Abs[ϕ′′[x0]]  /. ψ[x0] →
1

2 π
,

ϕ[x0] → ΦC[x0], ϕ
′′
[x0] → D[ΦC[x0], {x0, 2}] /. x0 → -π  2, k > 0 +

Simplify ⅇ
1

4
ⅈ π Sign[ϕ′′[x0]]+ⅈ p ϕ[x0]

2 π ψ[x0]   p Abs[ϕ′′[x0]]  /. ψ[x0] →
1

2 π
,

ϕ[x0] → ΦC[x0], ϕ
′′
[x0] → D[ΦC[x0], {x0, 2}] /. x0 → π  2, k > 0


1

2
+

ⅈ

2
 ⅇ-ⅈ p

p π

+


1

2
-

ⅈ

2
 ⅇⅈ p

p π

or

wC[11] = wC[10] /.
1

2
+
ⅈ

2
→ PolarForm

1

2
+
ⅈ

2
 /.

1

2
-
ⅈ

2
→ PolarForm

1

2
-
ⅈ

2


ⅇ
ⅈ p-

ⅈ π

4

p 2 π
+

ⅇ
-ⅈ p+

ⅈ π

4

p 2 π

wC[12] = wC[11] // ExpToTrig

2

π
Cosp -

π

4


p

This approximation is accurate even for modest p
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PlotBesselJ[0, p],

2

π
Cosp -

π

4


p
,

{p, 0, 10}, PlotStyle → {Black, Directive[Black, Dashed]},

PlotLegends → TraditionalForm[BesselJ[0, p]], TraditionalForm

2

π
Cosp -

π

4


p
,

AxesLabel → {Stl["p"], Stl[""]}

2 4 6 8 10
p

0.5

1.0

J0(p)

2

π
cosp-

π

4


p

Figures
I define some functions that will be useful for the operations below

Clear[QPoint, QArc2D, QxAxis, QyAxis];

(* Label a point with offset text *)

QPoint[P_, text_, {lr_, ud_}] :=

{Point[P], Text[Stl[text], P + {lr, ud}]} ;

QArc2D[r_, θS_, θF_, text_] :=

Line@TableCoordinateTransform["Polar" → "Cartesian", {r, ξ}],

ξ, θS, θF, Sign[θF - θS]
π

64
,

Black, TextStl[text], CoordinateTransform

"Polar" → "Cartesian", 1.25 r,
1

2
θS + θF;

QxAxis[xStart_, xFin_, yLevel_, text_, {lr_, ud_}] :=

{Line[{{xStart, yLevel}, {xFin, yLevel}}],

Text[Stl[text], {xFin, yLevel} + {lr, ud}]} ;

QyAxis[yStart_, yFin_, xLevel_, text_, {lr_, ud_}] :=

{Line[{{xLevel, yStart}, {xLevel, yFin}}],

Text[Stl[text], {xLevel, yFin} + {lr, ud}]}
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Figure 1

Moduleδ = 0.05, xMin = -0.1, xMax = 1.2, yMin = -0.1, yMax = 0.5, R = 0.5,

θPolar = π  8, s = 1, V = 1, α, αArc, O, P, S, points, arrows, axes,

O = {0, 0}; P = R {Cos[θPolar], Sin[θPolar]}; S = {V s, 0};

points = {PointSize[0.02], QPoint[O, "O", {-δ, δ}],

QPoint[P, "P(X, Y)", {δ, δ}], QPoint[S, "S(Xs, Ys)", {δ, -δ}]};

arrows = Arrow[{S, P}], TextStl"r
→
",

S + P

2
+ {δ, δ} ,

Blue, Arrow[{S, S - 5 {δ, 0}}], TextStl"V
→
",

S + S - 5 {δ, 0}

2
+ {0, -δ};

α = With{SR = S - {R, 0}, SP = S - P},

ArcCosDot[SR, SP]  Sqrt[Dot[SR, SR]] Sqrt[Dot[SP, SP]];

αArc = TranslateQArc2D
1

8
, π - α, π , "α", S;

axes = {QxAxis[xMin, xMax, 0, "X", {δ, 0}], QyAxis[yMin, yMax, 0, "Y", {0, δ}]};

Graphics[{axes, points, arrows, αArc}, Axes → None,

PlotLabel → StringForm["problem geometry"],

PlotRange → {{xMin, 1.1 xMax}, {yMin, 1.1 yMax}}]

X

Y

O

P(X, Y)

S(Xs, Ys)

r
→

V
→

α

problem geometry

Figure 2

Φ[r, s]

g s2

4 r
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Moduleg = 9.8 (*ms2*), rMin = 10, rMax = 50, sMin = 0, sMax = 10, G,

Plot3D
g s2

4 r
, {r, rMin, rMax}, {s, sMin, sMax},

AxesLabel → {Stl["r(m)"], Stl["s(sec)"], Stl["Φ"]},

ImageSize → 400, MeshFunctions -> {#3 &}, Mesh → 10

Figure 3

FIGA = Withs = 1, YP = 3  16,

ShowCirclesOfInfluence[s, YP]

X

Y

O

S {V s, 0}
{
V s

2
, 0}

P

r
→

V s

4
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FIGB = With[{V = 1},

LocusOfCircles[V]]

X

Y

O

θKelvin = sin-1
1

3

Grid[{{FIGA, FIGB}}]

X

Y

O

S {V s, 0}
{
V s

2
, 0}

P

r
→

V s

4

Y

O

θKelvin = sin-1
1

3

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Clear[ShowCirclesOfInfluence];

ShowCirclesOfInfluence[s_, YP_] :=

Module{δ = 0.05, V = 1, O, S, P, xCenter,

X0, RCOI, XP1, XP2, axes, points, lines, circle, labels},

O = {0, 0};

S = {V s, 0};

(* The diameter of the circle of influence is V s2 so the radius is *)

RCOI = V s / 4;

(* The center of the circle of influence is 3 V s/4*)

X0 = 3 V s / 4;

{XP1, XP2} = X0 - -YP2 + RCOI2 , X0 + -YP2 + RCOI2 ;

P = {XP2, YP};

points =

PointSize[0.02], QPoint[O, "O", {-δ, δ}], QPoint[S, "S {V s, 0}", {δ, -δ}],

QPointS  2, "{
V s

2
, 0}", {-2 δ, -2 δ}, {Blue, QPoint[P, "P", {δ, δ}]};

lines = {Lighter[Blue, 0.5], Arrow[{S, P}]},

Black, Arrowheads[{-0.02, 0.02}], Arrow
3 V s

4
, 0, 

3 V s

4
,
V s

4
  ;

axes = {QxAxis[-0.1, 1.2, 0, "X", {δ, 0}], QyAxis[-0.5, 0.5, 0, "Y", {0, δ}]};

circle = Blue, Thick, Circle3 S  4, V s / 4;

labels = Blue, TextStl"r
→
",

S + P

2
+ {δ, 0},

Black, TextStl"
V s

4
", 

3 V s

4
,
V s

8
 + -3  2 δ, 0;

Graphics[{axes, points, lines, circle, labels},

Axes → None, ImageSize → {400, 200}]

Clear[LocusOfCircles];

LocusOfCircles[V_] :=

Module{δ = 0.05, circles, O, S, axes, points, θKelvin, lab},

O = {0, 0};

S = {V , 0};

θKelvin = ArcSin1  3;

circles = Blue, TableCircle
3 V s

4
, 0,

V s

4
, {s, 0.1, 1.5, 0.1};

axes = {QxAxis[-0.1, 1.5, 0, "X", {δ, 0}], QyAxis[-0.5, 0.5, 0, "Y", {0, δ}]};

points = {PointSize[0.02], QPoint[O, "O", {-δ, δ}]};

lab = Stl@StringForm["θKelvin = ``", θKelvin];

Graphics[{axes, points, circles,

InfiniteLine[{O, {1, Tan[θKelvin]}}], InfiniteLine[{O, {1, -Tan[θKelvin]}}]},

PlotLabel → lab, Axes → None, ImageSize → {300, 150}]
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Figure 4

Module{δ = 0.05, V = 1, s = 1, xB, yB, xC, yC,

O, S, P, RB, circle, C1, C2, Q1, Q2, axes, points, lines},

O = {0, 0};

S = {V s, 0};

yB = 1  4;

xB = With[{xA = O 〚1〛 , xC = S 〚1〛}, SolnProblem1[xA, xC, yB]〚1〛];

P = {xB, yB};

RB = Norm[P] / 4;

{xC, yC} = 3 P / 4;

circle = Circle[3 P / 4, RB];

{C1, C2} = xC - RB2 - yC2 , 0, xC + RB2 - yC2 , 0;

Q1 = {SolnProblem2[C1〚1〛 , P 〚1〛 , P 〚2〛], 0} ;

Q2 = {SolnProblem2[C2〚1〛 , P 〚1〛 , P 〚2〛], 0} ;

points = PointSize[0.02], QPoint[O, "O", {-δ, δ}],

QPoint[S, "S", {δ, -δ}], QPoint[P, "P", {δ, δ}], QPointP  2, "P/2", {-δ, δ},

{Red, QPoint[C1, "C1", {-δ, -δ}], QPoint[C2, "C2", {δ, -δ}]},

{Green, QPoint[Q1, "Q1", {δ, -δ}], QPoint[ Q2, "Q2", {δ, -δ}]};

lines = {Line[{O, P}], Line[{P, S}],

{Directive[Red, Dashed], Line[{C1, P}], Line[{P, Q1}]},

{Directive[Blue, Dashed], Line[{C2, P}], Line[{P, Q2}]}};

(*Print[points];*)

axes = {QxAxis[-0.1, 2.0, 0, "X", {δ, 0}], QyAxis[-0.1, 0.5, 0, "Y", {0, δ}]};

Graphics[{axes, points, {LightGray, circle}, lines}, Axes → None] 

X

Y

O

S

P

P/2

C1 C2 Q1 Q2

Some analytical geometry problems

Problem 1:  Given A and C on the x-Axis, Find B such that AB and BC are orthogonal. yB is given

p1[1] = {y ⩵ mAB x + bAB /. {x → xA, y → yA}, y ⩵ mAB x + bAB /. {x → xB, y → yB},

y ⩵ mBC x + bBC /. {x → xB, y → yB}, y ⩵ mBC x + bBC /. {x → xC, y → yC}}

{yA ⩵ bAB + mAB xA, yB ⩵ bAB + mAB xB, yB ⩵ bBC + mBC xB, yC ⩵ bBC + mBC xC}

p1[2] = p1[1] /. yA → 0, yC → 0, mBC → -1  mAB

0 ⩵ bAB + mAB xA, yB ⩵ bAB + mAB xB, yB ⩵ bBC -
xB

mAB
, 0 ⩵ bBC -

xC

mAB

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p1[3] = Solve[p1[2], {mAB, bAB, bBC, xB}]

mAB →
1

2 yB
-xA + xC - xA2 - 2 xA xC + xC2 - 4 yB2 ,

bAB →
1

2

xA2

yB
-
xA xC

yB
+
xA xA2 - 2 xA xC + xC2 - 4 yB2

yB
,

bBC →
1

2 yB
-xA xC + xC2 + xC xA2 - 2 xA xC + xC2 - 4 yB2 ,

xB →
1

2
xA + xC + xA2 - 2 xA xC + xC2 - 4 yB2 ,

mAB →
1

2 yB
-xA + xC + xA2 - 2 xA xC + xC2 - 4 yB2 ,

bAB →
1

2

xA2

yB
-
xA xC

yB
-
xA xA2 - 2 xA xC + xC2 - 4 yB2

yB
,

bBC →
1

2 yB
-xA xC + xC2 - xC xA2 - 2 xA xC + xC2 - 4 yB2 ,

xB →
1

2
xA + xC - xA2 - 2 xA xC + xC2 - 4 yB2 

Clear[SolnProblem1];

SolnProblem1[xA_, xC_, yB_] := (*for xB *)


1

2
xA + xC + xA2 - 2 xA xC + xC2 - 4 yB2 ,

1

2
xA + xC - xA2 - 2 xA xC + xC2 - 4 yB2 

Problem 2:  Given A on the x-Axis, and B such that AB and BC are orthogonal. Find C on the x-Axis

p2[1] = Solve[p1[2], {mAB, bAB, bBC, xC}]〚1〛

mAB → -
yB

xA - xB
, bAB →

xA yB

xA - xB
, bBC →

-xA xB + xB2 + yB2

yB
, xC →

-xA xB + xB2 + yB2

-xA + xB


Clear[SolnProblem2];

SolnProblem2[xA_, xB_, yB_] := (*for xC *)

-xA xB + xB2 + yB2

-xA + xB
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Figure 5

Module{δ = 0.05, xMax = 3, yMax = 1, O, axes, points, θKelvin, G},

O = {0, 0};

θKelvin = ArcSin1  3;

axes = {QxAxis[0, xMax, 0, "X", {δ, 0}], QyAxis[-yMax, yMax, 0, "Y", {0, δ}]};

points = {PointSize[0.02], QPoint[O, "O", {δ, -δ}]};

G[1] = Graphics[{axes, points, InfiniteLine[{O, {1, Tan[θKelvin]}}],

InfiniteLine[{O, {1, -Tan[θKelvin]}}]}, Axes → None];

G[2] = With{a1 = 1, a2 = 2, a3 = 3},

ParametricPlot{ΦCurve[α, a1], ΦCurve[α, a2], ΦCurve[α, a3]},

α, -π  2, π  2, PlotStyle → {Black, Blue, Green};

Show[

G[

1],

G[

2]]

X

Y

O
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Figure 6

Module{δ = 0.075, a2 = 2, a3 = 3, xRange = {-0.2, 4.25},

yRange = {-0.2, 1.2}, O, P, Q1, Q2, axes, points, lines, θKelvin,

soln, XP, YP, mCurve1, mCurve2, directives, G, Stl2, QPoint2},

Stl2[x_] := Style[x, 10, Bold, FontFamily → "Helvetica"];

QPoint2[P_, text_, {lr_, ud_}] := {Point[P], Text[Stl2[text], P + {lr, ud}]};

O = {0, 0};

θKelvin = ArcSin1  3;

(* Find the point P where the phase curves intersect *)

soln = FindRoot[{ΦCurve[α1, a2]〚1〛 ⩵ ΦCurve[α2, a3]〚1〛,

ΦCurve[α1, a2]〚2〛 ⩵ ΦCurve[α2, a3]〚2〛}, {{α1, 0.4}, {α2, 1.3}}];

P = {XP, YP} = ΦCurve[α1, a2] /. soln;

(* find the slope of the phase curve at P *)

(* Then the intersection of the normal line through P with the x-Axis *)

mCurve1 = D[ΦCurve[α1, a2]〚2〛, α1]  D[ΦCurve[α1, a2]〚1〛, α1] /. soln;

Q1 = XP - YP  -1  mCurve1 , 0;

mCurve2 = D[ΦCurve[α2, a3]〚2〛, α2]  D[ΦCurve[α2, a3]〚1〛, α2] /. soln;

Q2 = XP - YP  -1  mCurve2 , 0;

axes = {Gray, QxAxis[0, xRange〚2〛 , 0, "X", {δ, 0}],

QyAxis[-0.2, yRange〚2〛, 0, "Y", {0, δ}]};

points = {PointSize[0.015], QPoint2[O, "O", {δ, -δ}],

{Red, QPoint2[P, "P", {-δ, δ}]},

{Blue, QPoint2[Q1, "Q1", -1.5 {0, δ}]},

{Green, QPoint2[Q2, "Q2", -1.5 {0, δ}]}};

(*Print[points];*)

lines = {InfiniteLine[{O, {1, Tan[θKelvin]}}],

{Blue, Arrowheads[Small], {Directive[Dashed], InfiniteLine[P, {1, mCurve1}]},

Arrow[{Q1, P}]}, {Green, Arrowheads[Medium],

{Directive[Dashed], InfiniteLine[P, {1, mCurve2}]}, Arrow[{Q2, P}]}};

directives = {Axes → None, ImageSize → {500, 300}, PlotRange → {xRange, yRange}};

G[1] = Graphics[{axes, points, lines}, Evaluate@directives];

G[2] =

ParametricPlot{ΦCurve[α, a2], ΦCurve[α, a3]},

α, 0, π  2, PlotStyle → {Blue, Green}, Evaluate@directives;

Show[G[2], G[1]]
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Figure A1

Module{g = 9.8 (*m/sec*), t = 2 (*sec*), r = 20 (*m*), kMax = 40, lab, F},

F[k_, t_, r_] := k3/2 BesselJ[0, k r] Sin g k t;

lab = Stl@StringForm["Integrand for s = ``sec, r = ``m", r, t];

Plot[F[k, 2, 10], {k, 0, kMax}, AxesLabel → {Stl["k"], Stl["F"]},

Mesh → False, PlotRange → All, PlotLabel → lab]
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F
Integrand for s = 20sec, r = 2m

42     Kelvin Ship Waves 07-12-18.nb


