
Asymptotic analysis of Airy Eqn 

07-23-16
N. T. Gladd

Initialization:  Be  sure  the  files  NTGStylesheet2.nb  and  NTGUtilityFunctions.m  is  are  in  the  same

directory as that from which this notebook was loaded. Then execute the cell immediately below by

mousing left on the cell bar to the right of that cell and then typing “shift” + “enter”. Respond “Yes” in

response to the query to evaluate initialization cells.

In[5]:= SetDirectory[NotebookDirectory[]];

(* set directory where source files are located *)

SetOptions[EvaluationNotebook[], (* load the StyleSheet *)

StyleDefinitions → Get["NTGStylesheet2.nb"]];

Get["NTGUtilityFunctions.m"]; (* Load utilities package *)

Original notebook Asymptotic Airy Eqn 10-10-15

Purpose
I work through an asymptotic analysis of the Airy equation. This is a classical problem and there are

many references.  

Airy’s equation was analyzed by George Stokes in 1857. His struggles with it were even the amusing

subject of one of his love letters to his bride-to-be.

“When the cat’s away the mice may play. You are the cat and I am the poor little mouse. I have been

doing what I guess you won’t let me do when we are married, sitting up till 3 o’clock in the morning

fighting hard against a mathematical difficulty. Some years ago I attacked an integral of Airy’s, and after

a severe trial reduced it to a readily calculable form. But there was one difficulty about it which, though I

tried till I almost made myself ill, I could not get over, and at last I had to give it up and profess myself

unable to master it. I took it up again a few days ago, and after a two or three days’ fight, the last of

which I sat up till 3, I at last mastered it. I don’t say you won’t let me work at such things, but you will

keep me to more regular hours. A little out of the way now and then does not signify, but there should

not be too much of it. It is not the mere sitting up but the hard thinking combined with it …….”
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1 Analysis
Airy’s equation is

d2 f(x)

d x2
+ x f(x) = 0

1A Obtaining an integral representation

The function satisfying this  differential  equation can be expressed as a contour  integral  and useful

asymptotic properties can be deduced using the method of steepest descent. Although the transforma-

tion into integral form can be quickly accomplished by a hand calculation, I persist in performing the

required operations with Mathematica.

To work in the standard notation I use for such problems I write the differential equation using k as the

independent variable

In[7]:= w1A[1] = D[f[k], {k, 2}] + k f[k] ⩵ 0

Out[7]= k f[k] + f′′[k] ⩵ 0

Assume that the integral has the form of a contour integral

f(k) = 


dz ek z ℱ (z)

I represent this form with the structure

In[8]:= w1A[2] = Int[Exp[k z] ℱ[z], ]

Out[8]= Intⅇk z ℱ[z], 

Then

In[9]:= w1A[3] =

w1A[1] /. {f[k] → Int[Exp[k z] ℱ[z], ], f′′[k] → Int[D[Exp[k z], {k, 2}] ℱ[z], ]}

Out[9]= k Intⅇk z ℱ[z],  + Intⅇk z z2 ℱ[z],  ⩵ 0

Integrate the first term by parts
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In[10]:= w1A[4] = w1A[3] /.

Intⅇk z ℱ[z],  → BoundaryTermⅇk z ℱ[z],  - Int
ⅇk z

k
D[ℱ[z], z],  // Expand

Out[10]= k BoundaryTermⅇk z ℱ[z],  + Intⅇk z z2 ℱ[z],  - k Int
ⅇk z ℱ′[z]

k
,  ⩵ 0

where the “BoundaryTerm” term represents the value of the first  argument at the end points of the

contour .

Assume that the contour is  is chosen so that the boundary term vanishes.

In[11]:= w1A[5] = w1A[4] /. BoundaryTerm[arg_, con_] → 0 /.

a_. Int[b_ c_, d_] /; FreeQ[b, z] → a b Int[c, d]

Out[11]= Intⅇk z z2 ℱ[z],  - Intⅇk z ℱ′[z],  ⩵ 0

I use a rewrite rule to combine the two terms 

In[12]:= w1A[6] = w1A[5] /. c1_. Int[a_, con_] + c2_. Int[b_, con_] → Int[c1 a + c2 b, con]

Out[12]= Intⅇk z z2 ℱ[z] - ⅇk z ℱ′[z],  ⩵ 0

The integral only vanishes if the integrand vanishes

In[13]:= w1A[7] = w1A[6]〚1, 1〛 ⩵ 0

Out[13]= ⅇk z z2 ℱ[z] - ⅇk z ℱ′[z] ⩵ 0

Solve this ode

In[14]:= w1A[8] = DSolve[w1A[7], ℱ[z], z]〚1, 1〛 /. C[1] → κ // ER

Out[14]= ℱ[z] → ⅇ
z3

3 κ

where κ is a constant of integration. Thus,

In[15]:= w1A[9] = w1A[2] /. w1A[8] /. Int[a_ b_, c_] /; FreeQ[a, z] → a Int[b, c]

Out[15]= κ Intⅇ
k z+

z3

3 , 

or, the explicit integral representation of f(k) is

f(k) = κ 


dz ⅇk z+
z3

3

provided that the contour  is chosen so that the integrand vanishes at the end points of .
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1B Choice of contour

For z >> 1 the e
z3

3  term dominates the integrand
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Note: Such figures are generated in an Appendix

Choose a polar representation of z

In[17]:= w1B[1] = Exp-z3  3 /. z → r Exp[I θ]

Out[17]= ⅇ
-
1

3
ⅇ3 ⅈ θ r3

The condition on  requires Reez33  → 0 as r →∞ and the contour plot makes it clear that this can only

occur in three wedge shaped segments of the complex plane. 

In[18]:= w1B[2] = ComplexExpand[w1B[1]]

Out[18]= ⅇ
-
1

3
r3 Cos[3 θ]

Cos
1

3
r3 Sin[3 θ] - ⅈ ⅇ

-
1

3
r3 Cos[3 θ]

Sin
1

3
r3 Sin[3 θ]

The real part is

In[19]:= w1B[3] = Re[w1B[2]〚1〛] // Simplify[#, {r ∈ Reals, θ ∈ Reals}] &

Out[19]= ⅇ
-
1

3
r3 Cos[3 θ]

Cos
1

3
r3 Sin[3 θ]

The sign of the argument of the exponential term is controlled by θ
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In[20]:= RegionPlot-
1

3
r3 Cos[3 θ] < 0, {r, 0, 1}, θ, -π  3, 2 π - π  3,

FrameTicks → Automatic, Table
π

6
i, {i, -1, 12}, FrameLabel → {"r", "θ"}

Out[20]=
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The allowed ranges of θ (blue regions) where the integrand becomes vanishing small as r → ∞ are

-
π

6
< θ <

π

6
,

π

2
< θ <

5 π

6
,

7 π

6
< θ <

3 π

2

To satisfy the boundary condition, a contour must start at r = ∞ in one of the regions where the inte-

grand is vanishingly small and end at r = ∞ in another such region. The case where a contour starts and

ends in the same range is not allowed since the contour would constitute a closed path and, with no

poles contained within the contour,  the integral  would have zero value.  There are two independent

solutions of the Airy equation,  the Airy function and the BAiry function. By convention the contours

associated with these solutions are
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2 Asymptotic expansion of Ai(λ)  for λ > 0
The integral representation of the Airy function is

Ai(λ) =
1

2 π i

1

dz exp -
z3

3
+ λ z

where the 1
2π i

 is the value of the normalization constant κ chosen by convention. The first step is to

recast this integral into the standard form convenient for asymptotic analysis using steepest descent

method.




dz ek ρ(z) = 


dz ek (ϕ(z)+iψ(z))

In[22]:= w2[1] =
1

2 π I
IntExp-

s3

3
+ λ s ds, 1

Out[22]= -
ⅈ Intds ⅇ

-
s3

3
+s λ

, 1

2 π

Rescale the integration variable

In[23]:= w2[2] = w2[1] /. s → s[z] /. ds → D[s[z], z]

Out[23]= -
ⅈ Intⅇ

λ s[z]-
s[z]3

3 s′[z], 1

2 π
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In[24]:= w2[3] = w2[2] /. s →  λ # &

Out[24]= -
ⅈ Intⅇ

z λ32-
1

3
z3 λ32

λ , 1

2 π

A change of parameter casts this into standard form

In[25]:= w2[4] = w2[3] /. λ → k2/3 //. Int[a_. b_, c_] /; FreeQ[a, z] → a Int[b, c]

Out[25]= -
ⅈ k1/3 Intⅇ

k z-
k z3

3 , 1

2 π

The ρ(z) for this problem is

In[26]:= w2[5] = ρ[z] == k z -
k z3

3
 k // ExpandAll

Out[26]= ρ[z] ⩵ z -
z3

3

I  implement  the function PropertiesOfρ   to  calculate  some quantities  useful  for  a  steepest  descent

analysis

In[27]:= Clear[PropertiesOfρ];

PropertiesOfρ[ρ_] :=

Module[{saddlePoints, ϕ, ψ, d2ρ, w},

saddlePoints = Solve[D[ρ, z] ⩵ 0];

w[1] = ρ /. z → x + I y // ComplexExpand;

{ϕ, ψ} = w[1] /. ϕ_ + I ψ_ → {ϕ, ψ};

d2ρ = D[ρ, {z, 2}];

Association[

{"ρ" → ρ, "saddlePoints" → saddlePoints, "ϕ" → ϕ, "ψ" → ψ, "d2ρ" → d2ρ}]];

In[29]:= Aρ = PropertiesOfρ[w2[5]〚2〛]

Out[29]= ρ → z -
z3

3
, saddlePoints → {{z → -1}, {z → 1}},

ϕ → x -
x3

3
+ x y2, ψ → y - x2 y +

y3

3
, d2ρ → -2 z
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In[30]:= Normal[Aρ] // ColumnForm

Out[30]= ρ → z -
z3

3

saddlePoints → {{z → -1}, {z → 1}}

ϕ → x -
x3

3
+ x y2

ψ → y - x2 y +
y3

3

d2ρ → -2 z

There are two saddle points at -1 and 1.  I determine the constant ψ curves passing through the saddle

points.

The value of ρ(-1) is

In[31]:= w2[6] = Aρ["ρ"] /. z → -1

Out[31]= -
2

3

which is real so ψ(z = -1) = 0 at the saddle point. The equation describing the steepest descent curves

passing through the saddle point z = -1 is

In[32]:= w2[7] = Aρ["ψ"] ⩵ 0

Out[32]= y - x2 y +
y3

3
⩵ 0

The constant ψ curves passing through the saddle point z = -1 are

In[33]:= w2[8] = Solve[w2[7], y]

Out[33]= {y → 0}, y → - 3 -1 + x2 , y → 3 -1 + x2 

Similarly, the value of ρ(1) is

In[34]:= w2[9] = Aρ["ρ"] /. z → 1

Out[34]=
2

3

In[35]:= w2[10] = Aρ["ψ"] ⩵ 0

Out[35]= y - x2 y +
y3

3
⩵ 0

which is the same equation as for saddle point 1

The next step is to examine the saddle points of the integrand and determine how to deform the contour

1 so that will pass through a saddle point along curves of steepest descent. 
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Out[36]=
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From the figure it is obvious that the path 1 is a steepest descent path.  The objective is to deform 1

so that it passes through the saddle point at zSP1 = -1 along the steepest descent path 1.

 

A strategy for distorting 1  into 1  is to start at some point {0, -yMax} on 1, move along ℒ1  to the

steepest descent path 1, follow 1 to y = yMax, then return along ℒ2 to 1. If the contributions along

ℒ1 and ℒ2 are negligible as yMax → ∞, then the integration along 1 is equivalent to integration along

1. This is allowed since there are no intervening poles.
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Contour for Airy

1 1

ℒ1

ℒ2

1 app

{0, -Ymax}

Since ℒ1 and ℒ2 are arbitrarily deep in the zones where ek ρ(z) is tending to zero, their contributions are

clearly small with respect to the contribution near the saddle point. In a more formal sense, it is straight-

forward to calculate that the contributions along ℒ1 and ℒ2 are bounded and that those bounds tend to

Asymptotic analysis of Airy Eqn 07-23-16.nb     9

copyright © N T Gladd 2016



zero as Ymax → ∞. 

3 Asymptotic approximation for Ai(λ) for λ > 0
So far,

Ai(λ) =
1

2 π i

1

dz exp -
z3

3
+ λ z =

i k1/3

2 π i

1

dz ek z-
z3

3

≃
i k1/3

2 π i

1

dz ek z-
z3

3


Further, for the purpose of calculating the leading order asymptotic expression, note that  the steepest

descent contour 1 is approximated by the straight line z = -1 + i y in the vicinity of the saddle point

In[39]:= w3[1] = w2[4] /. 1 → approx

Out[39]= -
ⅈ k1/3 Intⅇ

k z-
k z3

3 , approx

2 π

In[40]:= w3[2] = w3[1] /. ⅇ
k z-

k z3

3 → ⅇ
k ρ[z]

Out[40]= -
ⅈ k1/3 Intⅇk ρ[z], approx

2 π

Approximate ρ by a Taylor expansion about the saddle point

In[41]:= w3[3] = w3[2] /. ρ[z] → Normal@Series[ρ[z], {z, z0, 2}]

Out[41]= -
1

2 π
ⅈ k1/3 Intⅇ

k ρ[z0]+(z-z0) ρ′[z0]+
1

2
(z-z0)2 ρ′′[z0]

, approx

In[42]:= w3[4] = {w2[5], D[#, z] & /@ w2[5], D[#, {z, 2}] & /@ w2[5]} /. z → z0

Out[42]= ρ[z0] ⩵ z0 -
z03

3
, ρ′[z0] ⩵ 1 - z02, ρ′′[z0] ⩵ -2 z0

In[43]:= w3[5] = w3[4] /. z0 → -1 // ER

Out[43]= ρ[-1] → -
2

3
, ρ′[-1] → 0, ρ′′[-1] → 2

In[44]:= w3[6] = w3[3] /. z0 → -1 /. w3[5]

Out[44]= -
ⅈ k1/3 Intⅇ

k -
2

3
+(1+z)2

, approx

2 π

Change variables in  manner that takes into account the functional variation of the differential element
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In[45]:= w3[7] = w3[6] /. z → z[s] /. a_. Int[b_, c_] → a Int[b D[z[s], s], c]

Out[45]= -
1

2 π
ⅈ k1/3 Intⅇ

k -
2

3
+(1+z[s])2

z′[s], approx

Express the integrand in terms of the approximate contour 1 app

In[46]:= w3[8] = w3[7] /. z → -1 + I # & // ExpandAll

Out[46]= -
ⅈ k1/3 Intⅈ ⅇ

-
2 k

3
-k s2

, approx

2 π

Since the integrand is peaked about the saddle point (the motivating reason for changing the contour of

integration), the contour of integration can be extended to ∞

In[47]:= w3[9] = w3[8] /. approx → {s, -∞, ∞}

Out[47]= -
ⅈ k1/3 Intⅈ ⅇ

-
2 k

3
-k s2

, {s, -∞, ∞}

2 π

Finally, I invoke Mathematica’s Integration routine 

In[48]:= w3[10] = w3[9] /. Int → Integrate

Out[48]= ConditionalExpression
ⅇ-2 k/3

2 k1/6 π

, Re[k] > 0

In[49]:= w3[11] = Simplify[w3[10], Assumptions → Re[k] > 0]

Out[49]=
ⅇ-2 k/3

2 k1/6 π

Returning to the original parameter

In[50]:= w3[12] = w3[11] /. k → λ
3/2

// PowerExpand

Out[50]=
ⅇ
-
2 λ32

3

2 π λ1/4

Stating this result in standard asymptotic notation

Ai(λ) ~
ⅇ
-
2 λ3/2

3

2 π λ
4

as (λ → ∞)

I check this against Mathematica’s implementation of the Airy function
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In[51]:= Module{lab, F, FAsymptotic},

F[λ_] := AiryAi[λ];

FAsymptotic[λ_] :=
ⅇ
-
2 λ32

3

2 π λ1/4
;

lab = Stl@StringForm["Airy vs leading order asymptotic approximation"];

Plot{F[k], FAsymptotic[k]}, {k, 1, 5}, AxesLabel → {Stl["λ"], Stl["F"]},

PlotLabel → lab, PlotStyle → {Black, Blue, Darker[Green, 0.5]},

PlotLegends → Placed"AiryAi[λ]", "
ⅇ
-
2 λ32

3

2 π λ1/4
", Right

Out[51]=

2 3 4 5
λ

0.05

0.10

0.15

F
Airy vs leading order asymptotic approximation

AiryAi[λ]

ⅇ
-

2 λ3/2

3

2 π λ1/4

4 Asymptotic expansion of Ai(λ)  for λ < 0
For this case I write 

Ai(Λ) =
1

2 π i

1

dz exp -
z3

3
- Λ z

where Λ  = - λ and is a positive quantity. Note the sign change in the argument of the exponential. 

In[52]:= w4[1] =
1

2 π I
IntExp-

s3

3
- Λ s ds, 1

Out[52]= -
ⅈ Intds ⅇ

-
s3

3
-s Λ

, 1

2 π
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In[53]:= w4[2] = w4[1] /. s → s[z] /. ds → D[s[z], z]

Out[53]= -
ⅈ Intⅇ

-Λ s[z]-
s[z]3

3 s′[z], 1

2 π

In[54]:= w4[3] = w4[2] /. s →  Λ # &

Out[54]= -
ⅈ Intⅇ

-z Λ32-
1

3
z3 Λ32

Λ , 1

2 π

In[55]:= w4[4] = w4[3] /. Λ → k2/3 //. Int[a_. b_, c_] /; FreeQ[a, z] → a Int[b, c]

Out[55]= -
ⅈ k1/3 Intⅇ

-k z-
k z3

3 , 1

2 π

The ρ(z) for this problem is

In[56]:= w4[5] = ρ[z] == -k z -
k z3

3
 k // ExpandAll

Out[56]= ρ[z] ⩵ -z -
z3

3

As before

In[57]:= Aρ2 = PropertiesOfρ[w4[5]〚2〛];

Normal[Aρ2] // ColumnForm

Out[58]= ρ → -z -
z3

3

saddlePoints → {{z → -ⅈ}, {z → ⅈ}}

ϕ → -x -
x3

3
+ x y2

ψ → -y - x2 y +
y3

3

d2ρ → -2 z

In this case, there are two saddle points at -i and i.  The value of ρ(-i) is

In[59]:= w4[6] = Aρ2["ρ"] /. z → -I

Out[59]=
2 ⅈ

3

The equation describing the steepest descent curves passing through the saddle point z = -i is
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In[60]:= w4[7] = Aρ2["ψ"] ⩵ 2  3

Out[60]= -y - x2 y +
y3

3
⩵

2

3

In this case it is easier to solve for x(y).

In[61]:= w4[8] = Solve[w4[7], x]

Out[61]= x → -
-2 + y 1 + y

3 y
, x →

-2 + y 1 + y

3 y


Similarly, the  value of ρ(i) is

In[62]:= w4[9] = Aρ2["ρ"] /. z → I

Out[62]= -
2 ⅈ

3

The equation describing the steepest descent curves passing through the saddle point z = i is

In[63]:= w4[10] = Aρ2["ψ"] ⩵ -2  3

Out[63]= -y - x2 y +
y3

3
⩵ -

2

3

In[64]:= w4[11] = Solve[w4[10], x]

Out[64]= x → -
-1 + y 2 + y

3 y
, x →

-1 + y 2 + y

3 y


The steepest descent paths passing through the two saddle points at z = -i and z = i are
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The strategy for distorting the contour 1  is to pull the midpoint of the contour to the right along the

positive axis and adjust it to coincide with 1 and 2. This is allowed since there are no intervening

poles.

5 Asymptotic approximation for Ai(λ) for λ < 0
So far,

Ai(Λ) =
1

2 π i

1

dz exp -
z3

3
- Λ z =

i k1/3

2 π i

1

dz ek -z-
z3

3

≃
i k1/3

2 π i

1

dz ek -z-
z3

3

+
i k1/3

2 π i

2

dz ek -z-
z3

3


In this case, there are contributions from both saddle points.

5A  Contribution from steepest descent curve 1 passing through saddle point z 

= -i

In[66]:= w5A[1] = w4[4] /. 1 → 1

Out[66]= -
ⅈ k1/3 Intⅇ

-k z-
k z3

3 , 1

2 π

In[67]:= w5A[2] = w5A[1] /. ⅇ
-k z-

k z3

3 → ⅇ
k ρ[z]

Out[67]= -
ⅈ k1/3 Intⅇk ρ[z], 1

2 π
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Approximate ρ by a Taylor expansion about the saddle point

In[68]:= w5A[3] = w5A[2] /. ρ[z] → Normal@Series- z -
z3

3
, {z, z0, 2}

Out[68]= -
1

2 π
ⅈ k1/3 Intⅇ

k -z0-(z-z0)2 z0-
z03

3
+(z-z0) -1-z02

, 1

In[69]:= w5A[4] = {w4[5], D[#, z] & /@ w4[5], D[#, {z, 2}] & /@ w4[5]} /. z → z0

Out[69]= ρ[z0] ⩵ -z0 -
z03

3
, ρ′[z0] ⩵ -1 - z02, ρ′′[z0] ⩵ -2 z0

In[70]:= w5A[5] = w5A[4] /. z0 → -I // ER

Out[70]= ρ[-ⅈ] →
2 ⅈ

3
, ρ′[-ⅈ] → 0, ρ′′[-ⅈ] → 2 ⅈ

In[71]:= w5A[6] = w5A[3] /. z0 → -I /. w5A[5]

Out[71]= -
ⅈ k1/3 Intⅇ

k 
2 ⅈ

3
+ⅈ (ⅈ+z)2

, 1

2 π

Change variables

In[72]:= w5A[7] = w5A[6] /. z → z[s] /. a_. Int[b_, c_] → a Int[b D[z[s], s], c]

Out[72]= -
1

2 π
ⅈ k1/3 Intⅇ

k 
2 ⅈ

3
+ⅈ (ⅈ+z[s])2

z′[s], 1

The approximate functional form for 1 is z → x + i (x-1)   Handling the Mathematica representation of

the equation for the curves of steepest descent requires some care. See Appendix A for detail

The straight line approximation for 1 in the vicinity of zSP1 is 

In[73]:= w5A[8] = w5A[7] /. z → # + I # - 1  & // ExpandAll

Out[73]= -
ⅈ k1/3 Int1 + ⅈ ⅇ

2 ⅈ k

3
-2 k s2

, 1

2 π

Since this is a steepest descent path, the linear path may be extended to ∞

In[75]:= w5A[9] = w5A[8] /. 1 → {s, -∞, ∞}

Out[75]= -
1

2 π
ⅈ k1/3 Int1 + ⅈ ⅇ

2 ⅈ k

3
-2 k s2

, {s, -∞, ∞}
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In[76]:= w5A[10] = w5A[9] /. Int → Integrate

Out[76]= ConditionalExpression

1

2
-

ⅈ

2
 ⅇ

2 ⅈ k

3

k1/6 2 π
, Re[k] > 0

In[77]:= w5A[11] = Simplify[w5A[10], Assumptions → Re[k] > 0]

Out[77]=


1

2
-

ⅈ

2
 ⅇ

2 ⅈ k

3

k1/6 2 π

In[78]:= w5A[12] = w5A[11] /.
1

2
-
ⅈ

2
-> PolarForm

1

2
-
ⅈ

2


Out[78]=
ⅇ

2 ⅈ k

3
-
ⅈ π

4

2 k1/6 π

Returning to the original parameter

In[79]:= w5A[13] = w5A[12] /. k → Λ
3/2

// PowerExpand

Out[79]=
ⅇ
-
ⅈ π

4
+
2

3
ⅈ Λ32

2 π Λ1/4

5B  Contribution from steepest descent curve 2 passing through saddle point z = 

i

In[80]:= w5B[1] = w4[4] /. 1 → 2

Out[80]= -
ⅈ k1/3 Intⅇ

-k z-
k z3

3 , 2

2 π

In[81]:= w5B[2] = w5B[1] /. ⅇ
-k z-

k z3

3 → ⅇ
k ρ[z]

Out[81]= -
ⅈ k1/3 Intⅇk ρ[z], 2

2 π

Approximate ρ by a Taylor expansion about the saddle point
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In[82]:= w5B[3] = w5B[2] /. ρ[z] → Normal@Series- z -
z3

3
, {z, z0, 2}

Out[82]= -
1

2 π
ⅈ k1/3 Intⅇ

k -z0-(z-z0)2 z0-
z03

3
+(z-z0) -1-z02

, 2

In[83]:= w5B[4] = {w4[5], D[#, z] & /@ w4[5], D[#, {z, 2}] & /@ w4[5]} /. z → z0

Out[83]= ρ[z0] ⩵ -z0 -
z03

3
, ρ′[z0] ⩵ -1 - z02, ρ′′[z0] ⩵ -2 z0

In[84]:= w5B[5] = w5B[4] /. z0 → I // ER

Out[84]= ρ[ⅈ] → -
2 ⅈ

3
, ρ′[ⅈ] → 0, ρ′′[ⅈ] → -2 ⅈ

In[85]:= w5B[6] = w5B[3] /. z0 → I /. w5B[5]

Out[85]= -
ⅈ k1/3 Intⅇ

k -
2 ⅈ

3
-ⅈ (-ⅈ+z)2

, 2

2 π

Change variables

In[86]:= w5B[7] = w5B[6] /. z → z[s] /. a_. Int[b_, c_] → a Int[b D[z[s], s], c]

Out[86]= -
1

2 π
ⅈ k1/3 Intⅇ

k -
2 ⅈ

3
-ⅈ (-ⅈ+z[s])2

z′[s], 2

The straight line approximation for 2 in the vicinity of zSP2 is 

In[87]:= w5B[8] = w5B[7] /. z → # + I 1 - #  & // ExpandAll

Out[87]= -
ⅈ k1/3 Int1 - ⅈ ⅇ

-
2 ⅈ k

3
-2 k s2

, 2

2 π

In[88]:= w5B[9] = w5B[8] /. 2 → {s, -∞, ∞}

Out[88]= -
1

2 π
ⅈ k1/3 Int1 - ⅈ ⅇ

-
2 ⅈ k

3
-2 k s2

, {s, -∞, ∞}

In[89]:= w5B[10] = w5B[9] /. Int → Integrate

Out[89]= ConditionalExpression-

1

2
+

ⅈ

2
 ⅇ

-
2 ⅈ k

3

k1/6 2 π
, Re[k] > 0
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In[90]:= w5B[11] = Simplify[w5B[10], Assumptions → Re[k] > 0]

Out[90]= -


1

2
+

ⅈ

2
 ⅇ

-
2 ⅈ k

3

k1/6 2 π

Here, I had to look at the FullForm of w5B[11] to get the pattern matching to work

In[91]:= w5B[12] = w5B[11] /. Complex[Rational[-1, 2], Rational[-1, 2]] →
ⅇ

ⅈ π

4

2

Out[91]=
ⅇ
-
2 ⅈ k

3
+
ⅈ π

4

2 k1/6 π

Returning to the original parameter

In[92]:= w5B[13] = w5B[12] /. k → Λ
3/2

// PowerExpand

Out[92]=
ⅇ

ⅈ π

4
-
2

3
ⅈ Λ32

2 π Λ1/4

5C  Combining the contributions from the two saddle points

In[93]:= w5C[1] = w5A[13] + w5B[13]

Out[93]=
ⅇ

ⅈ π

4
-
2

3
ⅈ Λ32

2 π Λ1/4
+
ⅇ
-
ⅈ π

4
+
2

3
ⅈ Λ32

2 π Λ1/4

In[94]:= w5C[2] = w5C[1] // ExpToTrig

Out[94]=

Cos π

4
-

2 Λ32

3


π Λ1/4

In[95]:= w5C[3] = w5C[2] /. Λ → -λ

Out[95]=

Cos π

4
-

2

3
(-λ)3/2

π (-λ)1/4

Stating this result in standard asymptotic notation

Ai(λ) ~
Cos π

4
-
2

3
(-λ)3/2

π (-λ)1/4

as (λ → -∞)
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I check this against Mathematica’s implementation of the Airy function 

In[96]:= Module{lab, standardArgs, F, FAsymptotic},

F[λ_] := AiryAi[λ];

FAsymptotic[λ_] :=
Cos π

4
-

2

3
(-λ)3/2

π (-λ)1/4
;

lab = Stl@StringForm["Airy vs leading order asymptotic approximation"];

standardArgs = StandardArgs["λ", "F", lab];

Plot{F[k], FAsymptotic[k]}, {k, -10, -0.1}, AxesLabel → {Stl["λ"], Stl["F"]},

PlotLabel → lab, PlotStyle → {Black, Blue, Darker[Green, 0.5]},

PlotLegends → Placed"AiryAi[λ]", "
Cos π

4
-

2

3
(-λ)3/2

π (-λ)1/4
", Right

Out[96]=

-10 -8 -6 -4 -2
λ

-0.4

-0.2

0.2

0.4

0.6

F
Airy vs leading order asymptotic approximation

AiryAi[λ]

Cos
π

4
-

2

3
(-λ)3/2

π (-λ)1/4

Appendix A  Detail of steepest descent curves for λ < 0
The equation for the steepest descent curves near the saddle point z = -i is

In[97]:= A[1] = -y - x2 y +
y3

3
⩵

2

3

Out[97]= -y - x2 y +
y3

3
⩵

2

3

I can solve this cubic
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In[98]:= A[2] = Solve[A[1], y] // Simplify

Out[98]= y → 1 + x2 + 1 + -x2 3 + 3 x2 + x4 
2/3

 1 + -x2 3 + 3 x2 + x4 
1/3

,

y → ⅈ --ⅈ + 3  1 + x2 + ⅈ + 3  1 + -x2 3 + 3 x2 + x4 
2/3



2 1 + -x2 3 + 3 x2 + x4 
1/3

,

y → 9 ⅈ ⅈ + 3  1 + x2 - 9 1 + ⅈ 3  1 + -x2 3 + 3 x2 + x4 
2/3



18 1 + -x2 3 + 3 x2 + x4 
1/3



The solutions of interest are those that pass through the saddle point at z = -i, or for which y = -1 at x = 0

In[99]:= A[3] = A[2] /. x → 0 // Simplify

Out[99]= {{y → 2}, {y → -1}, {y → -1}}

Discard the first solution

In[100]:= A[4] = A[2]〚2 ;; 3〛 // Simplify

Out[100]= y → ⅈ --ⅈ + 3  1 + x2 + ⅈ + 3  1 + -x2 3 + 3 x2 + x4 
2/3



2 1 + -x2 3 + 3 x2 + x4 
1/3

,

y → 9 ⅈ ⅈ + 3  1 + x2 - 9 1 + ⅈ 3  1 + -x2 3 + 3 x2 + x4 
2/3



18 1 + -x2 3 + 3 x2 + x4 
1/3



Although not apparent from the form of the solution, these are real expressions

In[101]:= LGrid[Table[{x, A[4]〚1, 1, 2〛, A[4]〚2, 1, 2〛} , {x, -1, 1, 0.25}],

"representative numerical values"]

Out[101]=

representative numerical values

-1. -2.2618+0. ⅈ -0.339877+5.55112×10-17 ⅈ

-0.75 -1.90764-1.11022×10-16 ⅈ -0.445534+0. ⅈ

-0.5 -1.5748+5.55112×10-17 ⅈ -0.587373+1.11022×10-16 ⅈ

-0.25 -1.26984-8.32667×10-17 ⅈ -0.771536+1.38778×10-16 ⅈ

0. -1.+0. ⅈ -1.+0. ⅈ

0.25 -1.26984-8.32667×10-17 ⅈ -0.771536+1.38778×10-16 ⅈ

0.5 -1.5748+5.55112×10-17 ⅈ -0.587373+1.11022×10-16 ⅈ

0.75 -1.90764-1.11022×10-16 ⅈ -0.445534+0. ⅈ

1. -2.2618+0. ⅈ -0.339877+5.55112×10-17 ⅈ

with the small imaginary parts arising from finite machine accurate arithmetic. Mathematica provide the

Chop function for eliminating such contributions. 
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In[102]:= LGrid[Table[{x, Chop@A[4]〚1, 1, 2〛, Chop@A[4]〚2, 1, 2〛} , {x, -1, 1, 0.25}],

"Representative numerical values"]

Out[102]=

Representative numerical values
-1. -2.2618 -0.339877

-0.75 -1.90764 -0.445534
-0.5 -1.5748 -0.587373
-0.25 -1.26984 -0.771536

0. -1. -1.
0.25 -1.26984 -0.771536
0.5 -1.5748 -0.587373

0.75 -1.90764 -0.445534
1. -2.2618 -0.339877

To  represent  the  steepest  descent  path,  one  must  switch  branches.  The  steepest  descent  curve

through 1 is the red branch for x < 0 but the green branch for x ≥ 0.

In[103]:= Plot[{Chop@A[4]〚1, 1, 2〛, Chop@A[4]〚2, 1, 2〛}, {x, -1, 1},

PlotStyle → {Red, Green}, AxesLabel → {Stl["x"], Stl["y"]}]

Out[103]=

-1.0 -0.5 0.5 1.0
x

-2.0

-1.5

-1.0

-0.5

y

Mathematica has the Piecewise function for handling such situations

In[104]:= Clear[SteepestDescentCurveSP1];

SteepestDescentCurveSP1[x_] :=

Piecewise ⅈ --ⅈ + 3  1 + x2 + ⅈ + 3  1 + -x2 3 + 3 x2 + x4
2/3



2 1 + -x2 3 + 3 x2 + x4
1/3

, x < 0,

 9 ⅈ ⅈ + 3  1 + x2 - 9 1 + ⅈ 3  1 + -x2 3 + 3 x2 + x4
2/3



18 1 + -x2 3 + 3 x2 + x4
1/3

, x ≥ 0

But you still have to be careful. Note that a straight forward series expansion of the piecewise function

gives the wrong answer.
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In[106]:= A[5] = {Normal@Series[SteepestDescentCurveSP1[x], {x, 0, 1}],

Normal@Series[SteepestDescentCurveSP1[x], {x, 0, 1}, Assumptions → {x ≤ 0}]}

Out[106]=  
-1 - x x ≤ 0
-1 + x True

, 
-1 - x x > 0
-1 + x True



Finally, the approximate for for the steepest descent curve passing through z = -i is x-1.

In[107]:= Plot[{Chop@SteepestDescentCurveSP1[x], x - 1} ,

{x, -1, 1}, PlotStyle → {Black, Directive[Black, Dashed]}]

Out[107]=

-1.0 -0.5 0.5 1.0

-2.0

-1.5

-1.0

-0.5
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Appendix: Graphics

In[16]:= Module{X = 3, Y = 3, Z = 5, δF = 0.005, image = 300, gSurface, lab, F, g},

F[z_] := Exp-
z3

3
+ z;

gSurface = Plot3DAbs[F[x + I y]], {x, -X, X},

{y, -Y, Y}, ImageSize → image, MeshFunctions -> {#3 &}, Mesh → 10,

Boxed → False, AxesLabel → Stl["x"], Stl["y"], Stl"|f(z)|" ,

PlotRange → {{-X, X}, {-Y, Y}, {0, Z}},

PlotLabel → TraditionalForm[F[z]];

g[1] = Show[{gSurface}];

g[2] = ContourPlotAbs[F[x + I y]], {x, -X, X}, {y, -Y, Y}, ImageSize → image,

MeshFunctions -> {#3 &}, Mesh → 50 , PlotRange → {{-X, X}, {-Y, Y}, {0, Z}},

FrameLabel →  StlRotate"y", -π  2, "", {Stl["x"], "" },

PlotLegends → Automatic;

Grid[{{g[1], g[2]}}]

Out[16]=

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

x

y
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In[21]:= Module

{X = 3, Y = 3, Z = 5, δF = 0.005, image = 300, gSurface, 1, 2, 3, lab, F, g},

F[z_] := Exp-
z3

3
+ z;

1 = {Directive[Yellow, Thick], Arrowheads[{0.0, 0.05, 0.05, 0.0}],

Arrow[{{0, -Y}, {0, Y}}], {Black, Text["1", {0, -2}]} };

2 = {Directive[Yellow, Thick], Arrowheads[{0.0, 0.05, 0.05, 0.0}],

Arrow[{{0, -Y}, {0, 0}}], {Black, Text["2", {0, -2}]} };

3 = {Directive[Yellow, Thick], Arrowheads[{0.0, 0.05, 0.05, 0.0}],

Arrow[{{0, 0}, {X, 0}}], {Black, Text["3", {2, 0}]} };

g[1] = ContourPlotAbs[F[x + I y]], {x, -X, X}, {y, -Y, Y}, ImageSize → image,

MeshFunctions -> {#3 &}, Mesh → 50 , PlotRange → {{-X, X}, {-Y, Y}, {0, Z}},

FrameLabel →  StlRotate"y", -π  2, "", {Stl["x"], "Contour for Airy" },

Epilog → {1};

g[2] = ContourPlotAbs[F[x + I y]], {x, -X, X}, {y, -Y, Y}, ImageSize → image,

MeshFunctions -> {#3 &}, Mesh → 50 , PlotRange → {{-X, X}, {-Y, Y}, {0, Z}},

FrameLabel →  StlRotate"y", -π  2, "", {Stl["x"], "Contour for BAiry" },

Epilog → {2, 3};

Grid[{{g[1], g[2]}}]

Out[21]=

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

x

y

Contour for Airy

1

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

x

y

Contour for BAiry

2

3
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In[37]:= Module{X = 3, Y = 3, Z = 5, δF = 0.005, image = 300,

gSurface, saddlePoint, sdPath, ySD1, ySD2, 1, lab, F, g},

F[z_] := Exp-
z3

3
+ z;

saddlePoint[1] = {Green, PointSize[0.025],

Point[{-1, 0}], {Black, Text["zsp1", {-1, 0} + {-0.5, 0}]}};

saddlePoint[2] = {Green, PointSize[0.025], Point[{1, 0}],

{Black, Text["zsp2", {1, 0} + {-0.5, 0}]}};

ySD1[x_] := 3 -1 + x2 ;

ySD2[x_] := - 3 -1 + x2 ;

sdPath[1] = {GREEN, Arrowheads[{0.0, 0.05, 0.05, 0.0}],

Arrow@Table[{x, ySD1[x]}, {x, -1, -2, -0.05}],

Arrow@Table[{x, ySD2[x]}, {x, -2, -1, 0.05}],

{Black, Text["1", {-1.5, ySD2[-1.5]}]} };

sdPath[2] = {GREEN, Arrowheads[{0.0, 0.05, 0.05, 0.0}],

Arrow@Table[{x, ySD2[x]}, {x, 2, 1, -0.05}],

Arrow@Table[{x, ySD1[x]}, {x, 1, 2, 0.05}],

{Black, Text["2", {1.5, ySD2[1.5]}]} };

1 = {Directive[Yellow, Thick], Arrowheads[{0.0, 0.05, 0.05, 0.0}],

Arrow[{{0, -Y}, {0, Y}}], {Black, Text["1", {0, -2}]} };

g[1] = ContourPlotAbs[F[x + I y]], {x, -X, X}, {y, -Y, Y}, ImageSize → image,

MeshFunctions -> {#3 &}, Mesh → 50 , PlotRange → {{-X, X}, {-Y, Y}, {0, Z}},

FrameLabel →  StlRotate"y", -π  2, "",

{Stl["x"], "Original and deformed contour for Airy" },

Epilog → {saddlePoint[1], saddlePoint[2], sdPath[1], sdPath[2], 1},

PlotLegends → Automatic

Out[37]=

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

x

y

Original and deformed contour for Airy

zsp1 zsp2

1 21

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
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In[38]:= Module{X = 3, Y = 3, Z = 5, δF = 0.005, image = 300, gSurface, saddlePoint,

sdPath, ySD1, ySD2, 1, ℒ1, ℒ2, 1Approx, Ymax = 2.5, Xmax, lab, F, g},

F[z_] := Exp-
z3

3
+ z;

saddlePoint[1] = {Green, PointSize[0.025], Point[{-1, 0}]};

ySD1[x_] := 3 -1 + x2 ;

ySD2[x_] := - 3 -1 + x2 ;

Xmax = Solve[ySD2[x] ⩵ -Ymax, x]〚2, 1, 2〛;

sdPath = {GREEN, Arrowheads[{0.0, 0.05, 0.05, 0.0}],

Arrow@Table[{x, ySD1[x]}, {x, -1, -Xmax, -0.05}],

Arrow@Table[{x, ySD2[x]}, {x, -Xmax, -1, 0.05}],

{Black, Text["1", {-1.5, ySD2[-1.5]}]} };

1 = {Directive[Yellow, Thick], Arrowheads[{0.0, 0.05, 0.05, 0.0}],

Arrow[{{0, -Y}, {0, Y}}], {Black, Text["1", {0, -2}]} };

ℒ1 = {Directive[Green, Thick], Arrowheads[{0.0, 0.05, 0.05, 0.0}],

Arrow[{{0, -Ymax}, {-Xmax , -Ymax}}], {Black, Text["ℒ1", {-1, -Ymax}]},

Arrow[{{-Xmax, Ymax}, {0 , Ymax}}], {Black, Text["ℒ2", {-1, Ymax}]} };

1Approx = Directive[Green, Thick, Dashed], Arrowheads[{0.0, 0.05, 0.05, 0.0}],

Arrow-1, -Ymax  2, -1 , Ymax  2,

{Black, Text["1 app", {-0.5, -Ymax / 4}]} ;

g[1] = ContourPlotAbs[F[x + I y]], {x, -X, X}, {y, -Y, Y}, ImageSize → image,

MeshFunctions -> {#3 &}, Mesh → 50 , PlotRange → {{-X, X}, {-Y, Y}, {0, Z}},

FrameLabel →  StlRotate"y", -π  2, "", {Stl["x"], "Contour for Airy" },

Epilog → {saddlePoint[1], sdPath, 1,

ℒ1, 1Approx, Text["{0, -Ymax}", {1, -Ymax}]}

Out[38]=

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

x

y

Contour for Airy

1 1

ℒ1

ℒ2

1 app

{0, -Ymax}
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In[65]:= Module{X = 3, Y = 3, Z = 5, δF = 0.005, image = 300,

gSurface, saddlePoint, sdPath, xSD1, xSD2, 1, lab, F, g},

F[z_] := Exp-
z3

3
- z;

saddlePoint[1] = {Green, PointSize[0.025],

Point[{0, -1}], {Black, Text["zsp1", {0, -1} + {-0.5, 0}]}};

saddlePoint[2] = {Green, PointSize[0.025], Point[{0, 1}],

{Black, Text["zsp2", {0, 1} + {-0.5, 0}]}};

xSD1[y_] :=
-2 + y 1 + y

3 y
;

xSD2[y_] := -
-1 + y 2 + y

3 y
;

sdPath[1] = {GREEN, Arrowheads[{0.0, 0.05, 0.05, 0.0}],

Arrow@Table[{Chop@xSD1[y], y}, {y, -3, -0.05, 0.05}],

{Black, Text["1", {xSD1[-2], -2}]} };

sdPath[2] = {GREEN, Arrowheads[{0.0, 0.05, 0.05, 0.0}],

Arrow@Table[{Chop@xSD2[y], y}, {y, 0.05, 3.0, 0.05}],

{Black, Text["2", {xSD2[2], 2}]} };

1 = {Directive[Yellow, Thick], Arrowheads[{0.0, 0.05, 0.05, 0.0}],

Arrow[{{0, -Y}, {0, Y}}], {Black, Text["1", {0, -2}]} };

g[1] = ContourPlotAbs[F[x + I y]], {x, -X, X}, {y, -Y, Y}, ImageSize → image,

MeshFunctions -> {#3 &}, Mesh → 50 , PlotRange → {{-X, X}, {-Y, Y}, {0, Z}},

FrameLabel →  StlRotate"y", -π  2, "",

{Stl["x"], "Original and deformed contour for Airy with λ < 0" },

Epilog → {saddlePoint[1], saddlePoint[2], sdPath[1], sdPath[2], 1}
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