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Initialization:  Be  sure  the  files  NTGStylesheet2.nb  and  NTGUtilityFunctions.m  is  are  in  the  same

directory as that from which this notebook was loaded. Then execute the cell immediately below by

mousing left on the cell bar to the right of that cell and then typing “shift” + “enter”. Respond “Yes” in

response to the query to evaluate initialization cells.

SetDirectory[NotebookDirectory[]];

(* set directory where source files are located *)

SetOptions[EvaluationNotebook[], (* load the StyleSheet *)

StyleDefinitions → Get["NTGStylesheet2.nb"]];

Get["NTGUtilityFunctions.m"]; (* Load utilities package *)

Purpose
Some recent issues involving option trading got me interested in Poisson processes and problems. To

gain perspective and become more familiar with the topic I worked through some basic derivations for

Poisson processes and solve some problems I found on the web. 

Basics

 Visualization of Poisson process

 Derivation of Poisson Process from recursive differential equations

 Derivation of Poisson Process from Bernoulli Trials with a low probability of success

 Derivation of Poisson Process from fact that interarrival times are exponentially distributed

Problems

1 Waiting for the doctor

2 Covariance, correlation

3 Conditional Poisson distribution

4 Thinning of Poisson process

5 Memoryless property of exponential distribution

6 Distribution of min[X, Y], max[X, Y] for exponential distribution

7 Fire Brigade

8 Conditional Poisson arrivals

9 Total waiting time

10 Poisson shocks

11 Hen crossing road

12 Waiting for a reward
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13 Trucks and cars

14 Light bulb failures

15 Three actors

16 Used car

17 Comparing two Poisson processes

18 Arriving students

19 Distribution of relative arrivals of two Poisson processes

20 Probability of reaching a point in space

21 London Bombs

22 Store Credit (compound Poisson process)

23 Poisson and the Law

Basics: Visualization and three different derivations of 

Poisson processes
Poisson processes are widely used as stochastic models for random arrivals. They have been exten-

sively studied and a wealth of material related to them is readily available on the web. I will not attempt

to provide a comprehensive or even a systematic presentation of the topic but focus here on calcula-

tions, making use of Mathematica capabilities whenever convenient (see Mathematica documentation

for PoissonProcess and PoissonDistribution). 

Visualization of Poisson process

To set the stage, suppose that emails arrive in your in-box at a rate of approximately one per hour. A

quick simulation shows what the record of one week’s arrivals during a 9 hour work day might look like.
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One day you arrive at the office just after lunch (5 hours after start of work). What is the distribution of

emails you would expect and the probability that 8 or more emails are waiting for you? 
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Module{λ = 1, tMax = 8, nSamples = 4000, tSlice = 5, , path, sliceData, lab, g},

 = PoissonProcess[λ];

path = RandomFunction[, {0, tMax}, nSamples];

sliceData = path["SliceData", tSlice];

lab = Stl@StringForm["(λ = ``) slice distribution at t = ``\n[n >= 9] = ``",

λ, tSlice, NF2@N@Probability[n ≥ 8, n  [tSlice]]];

g[1] = HistogramsliceData, -1  2, Max[sliceData], 1, "PDF",

PlotLabel → lab, AxesLabel → {Stl["nEmails"], Stl["PDF"]};

g[2] = Plot[Evaluate@PDF[[tSlice], x], {x , Min[sliceData], Max[sliceData]},

PlotRange → All, PlotStyle → Black];

Show[{g[1], g[2]}]
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nEmails
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PDF

(λ = 1) slice distribution at t = 5

ℙ[n >= 9] = 0.13

Derivations of Poisson Processes

1 Derivation of Poisson Process from recursive differential equations

A key assumption of the Poisson Process is that the probabiity of an arrival event is linearly proportional

to the elapsed time since the last event

((Δt) = 1)Δt λ +(Δt)

The second term represents the probability that two or more events arrived during the interval Δt. For a

standard Poisson process, that probability is assumed to be negligibly small.

To derive differential equations for the probabilities of Poisson events, I start with the probability that no

events occur during an interval Δt. 

ℙ[(t + Δt) = 0] = ℙ[(t) = 0 ⋂ (t + Δt) - (t) = 0]

= ℙ[(t) = 0]ℙ[(t + Δt) - (t) = 0]

=ℙ[(t) = 0]ℙ[(Δt) = 0] (1)
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=ℙ[(t) = 0] (1 - ℙ[(Δt) ≤ 0])

= 0(t) (1 - λΔt + (Δt))

where the short hand notation 0(t) = ℙ[(t) = 0] has been introduced. The first and last expressions

can be rearranged

0(t + Δt) = 0(t) (1 - λΔt + (Δt))

implies

0(t + Δt) - 0 (t)

Δt
= - λ

(2)

where the term associated with two or more events is neglected. In the limit Δt → 0

0(t + Δt) = 0(t) (1 - λΔt + (Δt))

implies

lim
Δt→ 0

0(t + Δt) - 0 (t)

Δt
=

d0

dt
= -λ

(3)

The initial condition for this differential equation is that the probability of no events at time t = 0 is 1.

That is 0(0) = 0.

By analogous logic and reasoning an equation can be derived for the probability of n events.

ℙ[(t + Δt) = n] =

ℙ[(t) = 0 ]ℙ[(t + Δt) - (t) = 0] +

ℙ[(t) = 1 ]ℙ[(t + Δt) - (t) = 1] +ℙ[(t) ≥ 2 ]ℙ[(t + Δt) - (t) ≤ 2]

= n(t) (1 - λΔt + (Δt)) + n-1(t) (λΔt) + n-2(t)(Δt)

or

dn(t)

dt
= -λn(t) + λn-1(t)

(4)

I use Mathematica to solve these odes.

w1[1] = DSolve[{D[0[t], t] ⩵ -λ 0[t], 0[0] ⩵ 1}, 0[t], t]〚1, 1〛

0[t] → ⅇ-t λ

w1[2] =

DSolve[{D[n[t], t] ⩵ -λ n[t] + λ n-1[t], n[0] ⩵ 0}, n[t], t]〚1, 1〛 /. K[1] → u

n[t] → -ⅇ-t λ

1

0

ⅇu λ λ -1+n[u] ⅆu - 
1

t

ⅇu λ λ -1+n[u] ⅆu
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w1[3] = w1[2] /. n → 1 /. w1[1] /. t → u // Simplify

1[t] → ⅇ-t λ t λ

w1[4] = w1[2] /. n → 2 /. w1[3] /. t → u // Simplify

2[t] →
1

2
ⅇ-t λ t2 λ2

w1[5] = w1[2] /. n → 3 /. w1[4] /. t → u // Simplify

3[t] →
1

6
ⅇ-t λ t3 λ3

The pattern is clear

n(t) = e-λ t
(λ t)n

n !

This probabiity distribution is built-in to Mathematica 

{PDF[PoissonProcess[λ ][t], n], PDF[PoissonDistribution[λ t ], n]}


ⅇ-t λ (t λ)n

n!
n ≥ 0

0 True
,

ⅇ-t λ (t λ)n

n!
n ≥ 0

0 True


2 Derivation of Poisson Process from Bernoulli Trials with a low probability of success

If successful Bernoulli events are counted are interpreted as arrival events, then the distribution of such

Bernoulli arrivals approximate Poisson arrivals in the case that an individual Bernoulli success has low

probability. A simulation illustrates this idea
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Module[{n = 100, λ = 5, t = 100, p , ℬ, , pathℬ, cpathℬ, ppath, lab},

p = λ / n;

ℬ = BernoulliProcess[p];

 = PoissonProcess[p];

pathℬ = RandomFunction[ℬ, {0, t}]["Paths"];

(* accumulate the successful Bernoulli events as arrivals *)

cpathℬ = FoldList[Plus, 0, pathℬ 〚1〛 〚All, 2〛]〚2 ;; -1〛 ;

cpathℬ = Transpose[{pathℬ〚1〛 〚All, 1〛, cpathℬ}];

ppath = RandomFunction[, {0, t}]["Paths"]〚1〛 ;

lab = Stl@StringForm[

"Bernoulli events (p = λ/n) Poisson events (intensity = λ/n)\nλ = ``, n = ``",

λ, n];

ListPlot[{cpathℬ, ppath}, PlotStyle → {Black, Red}, Filling → Axis,

AxesLabel → {Stl["t"], Stl["t"]}, PlotLabel → lab]]

20 40 60 80 100
t

1

2

3

4

5

t

Bernoulli events (p = λ/n) Poisson events (intensity = λ/n)

λ = 5, n = 100

The similarly of the number of events becomes clear when the distributions are compared.
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Module[{n = 100, λ = 5, t = 100, nSamples = 1000, p , ℬ, ℋ, events, lab},

p = λ / n;

ℬ = BernoulliProcess[p];

(* Simulate some Bernoulli events *)

events = Table[Total@RandomFunction[ℬ, {0, t}] ["Paths"]〚1〛〚All, 2〛 , {nSamples}];

ℋ = HistogramDistribution[events];

lab = Stl@StringForm[

"Bernoulli dist (Black) vs Poisson dist (Blue)\n[Bernoulli event] = ``", p];

DiscretePlot[{PDF[ℋ , k], PDF[PoissonProcess[p][t], k]}, {k, 0, 15},

PlotStyle → {Black, Blue}, PlotLabel → lab]]
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Bernoulli dist (Black) vs Poisson dist (Blue)

ℙ[Bernoulli event] =
1

20

The Poisson distribution can be derived from the sum of Bernoulli  events. By simple counting argu-

ments, the distribution of Bernoulli event is binomial.

w2[1] = Binomial[n, k] (λ δ)
k
1 - λ δ

n - k

(δ λ)k 1 - δ λ
-k+n Binomial[n, k]

Consider an interval of time τ and subdivide it in n intervals of size δ = τ/n

w2[2] = w2[1] /. δ → 1  n

λ

n

k

1 -
λ

n

-k+n

Binomial[n, k]

The idea is to let n → ∞ subject to  the constraint λ τ = n p. Introduce the explicit form for Binomial

w2[3] = w2[2] /. Binomial[n, k] →
n!

k! n - k!


λ

n

k
1 -

λ

n

-k+n

n!

k! -k + n!
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Rewrite this as

w2[4] = w2[3] /.
λ

n

k

→ λ
k

1

n

k


1

n

k
λk 1 -

λ

n

-k+n

n!

k! -k + n!

Note

n !

(n - k) !
= n (n - 1) ... (n - (k + 1)) k terms

and so

1

n

k n !

(n - k) !
=
n (n - 1) ... (n - (k + 1))

n n n ...
both numerator and denominator have k terms

or, letting Mathematica do the work

w2[5] = Limit
1

n

k n!

n - k!
, n → ∞

1

Also note

w2[6] = Limit 1 -
λ

n

-k+n

, n → ∞

ⅇ-λ

Thus, in the limit n → ∞

w2[7] = w2[4] /. 1 -
λ

n

-k+n

→ Exp[-λ] /. n! → n - k! nk // PowerExpand

ⅇ-λ λk

k!

which should be compared with

PDF[PoissonDistribution[λ], k]

ⅇ-λ λk

k!
k ≥ 0

0 True
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3 Derivation of Poisson Process from fact that interarrival times are exponentially distributed

As time increases, Poisson arrival events occur as illustrated here. 

2 4 6
0

1

2

3

4

nArrivals Relation between arrival counts and arrival times

T1 T2 T3 T4

There are useful logical relationships between the arrival times and increases in event counts

Event(T1 > t)⟺Event(( t) = 0)

So we know

[T1 > t] = [1 = 0] = e-λ t

where, from the previous section, I have used the expression e-λ t  for the explicit probability that no

event has occurred.

Similarly,  consider  the  second  arrival  event.  The  probability  that  the  second  arrival  event  has  not

occurred conditional on the first arrival event occurring at T1 = u 

[T2 > t T1 = u] = [no events between u and u + t T1 = u]

But, events in the interval {u, u+t} are not influenced by events in the interval {0, u}, so

[T2 > t T1 = u] = [no events between u and u + t T1 = u] = [(t) = 0] = e-λ t

This argument can be extended to conclude that all interarrival times are distributed like e- λ t. Introduc-

ing Wn to be the time waited for the nth arrival to occur. This is just the sum of the interarrival times

Wn = T1 + T2 + ... + Tn

Notice how this sum is distributed

With[{ℰ = ExponentialDistribution[λ]},

{Probability[T1 > t, T1  ℰ, Assumptions → {t > 0}],

Probability[T1 + T2 > t, {T1  ℰ, T2  ℰ}, Assumptions → {t > 0}],

Probability[T1 + T2 + T3 > t, {T1  ℰ, T2  ℰ, T3  ℰ}, Assumptions → {t > 0}]}]

ⅇ-t λ, ⅇ-t λ 1 + t λ,
1

2
ⅇ-t λ 2 + 2 t λ + t2 λ2
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In general

[Wn > t]  e-λ t 
k=1

n-1 (λ t)k

k !

Note that  this probability  is  equivalent to the probability  of  the nth  increase in the count having not

occurred

[Wn > t] = [(t) < n] = CDF[(t)]

The rhs is the CDF of the random variable (t). This sum involves the Gamma function

?? Gamma

Gamma[z] is the Euler gamma function Γ(z).
Gamma[a, z] is the incomplete gamma function Γ(a, z).

Gamma[a, z0, z1] is the generalized incomplete gamma function Γ(a, z0) - Γ(a, z1).  

Attributes[Gamma] = Listable, NumericFunction, Protected, ReadProtected

w3[1] = SumExp[-λ t]
λ tk

k!
, {k, 0, n - 1}

Gamma[n, t λ]

Gamma[n]

We can differentiate to calculate the PDF

w3[2] = -D[w3[1] /. t λ → u, u] /. u → t λ

ⅇ-t λ t λ
-1+n

Gamma[n]

Simplifying

w3[3] = w3[2] /. Gamma[n] → n - 1!

ⅇ-t λ t λ
-1+n

-1 + n!

Independently of this calculation, the Poisson PDF for   ℙ[(t) < n]  is

w3[4] = Refine[PDF[PoissonProcess[λ][t], n - 1], n - 1 ≥ 0]

ⅇ-t λ t λ
-1+n

-1 + n!

which is the same as w3[3]
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w3[3] - w3[4] // Simplify

0

and the Poisson process PDF has been derived starting with the fact that interarrival times are exponen-

tially distributed.

Problems involving Poisson processes
I found a nice collection of problems on the web and work through the details of the solution procedures.

1 Waiting for the doctor

Raic, Toman: Homogeneous Poisson Process - 1 

a) This can be immediately solved using Mathematica probability capabilities

The expected arrival time of the 3rd patient is

Module[{ℰ, result},

ℰ = ExponentialDistribution[λ];

result = Expectation[T1 + T2 + T3, {T1  ℰ, T2  ℰ, T3  ℰ}];

{result, result /. λ → 6}]


3

λ
,
1

2


Alternatively, the sum of exponential random variables is distributed according to an Erlang distribution.
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Module[{ℰ = ErlangDistribution[k, λ], results},

results =

{{Refine[PDF[ℰ, t], t > 0], Refine[CDF[ℰ, t], t > 0], Mean[ℰ], Variance[ℰ]}};

PrependTo[results, {"PDF", "CDF", "mean", "variance"}];

LGrid[results, "Properties of Erlang distribution"]]

Properties of Erlang distribution
PDF CDF mean variance

ⅇ-t λ t-1+k λk

Gamma[k]
GammaRegularized[k, 0, t λ]

k

λ

k

λ2

0.5 1.0 1.5 2.0
T3

0.5

1.0

1.5

PDF[T3]
distribution of arrival time of k = 3rd patient (λ = 6/hour)

[T3] =
1

2

b) Probability that less than three patients arrive during the first hour

0 2 4 6 8 10
k

0.05

0.10

0.15

PDF

distribution of arrivals

ℙ[k < 3] =
25

ⅇ6
= 0.062

or that the third arrival time occurs after one hour
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0.5 1.0 1.5 2.0
T

0.5

1.0

1.5

PDF

distribution of 3rd arrival time

ℙ[T > 1] =
25

ⅇ6
= 0.062

2 Covariance, correlation

Raic Homogeneous Poisson Process - 2 

Module[{},

 = PoissonProcess[λ];

{CovarianceFunction[, s, t], CorrelationFunction[, s, t]}]

λ Min[s, t],
Min[s, t]

s t


Alternatively,

Module{, meant},

 = PoissonProcess[λ];

Print["mean = ", Mean[[t]]];

Expectationx[t] - λ t (x[s] - λ s), x  

mean = t λ

ConditionalExpression[s λ, s < t]

Poisson process problems 07-12-17.nb     13

copyright © N T Gladd 2016



Module{λ = 1, tMax = 3, G},

G[1] = Plot3D[λ Min[s, t], {s, 0, tMax}, {t, 0, tMax}, Mesh → False,

AxesLabel → {Stl["s"], Stl["t"], ""}, PlotLabel → Stl["Covariance"]];

G[2] = Plot3Dλ
Min[s, t]

s t
, {s, 0, tMax}, {t, 0, tMax}, Mesh → False,

AxesLabel → {Stl["s"], Stl["t"], ""}, PlotLabel → Stl["Correlation"];

Grid[{{G[1], G[2]}}]

3 Conditional Poisson distribution

Raic Homogeneous Poisson Process - 4

Note

[X = k X + Y = n] =

[X = k ⋂ X + Y = n]

[X + Y = n]
conditional prob definition

=
[X = k ⋂ k + Y = n]

[X + Y = n]
meaning of intersection

=
[X = k][Y = n - k]

[X + Y = n]
X and Y are independent

Each of these three expressions can be evaluated. The two terms in the numerator are

w3[1] = Refine[Probability[X ⩵ k, X  PoissonDistribution[λX]], k ⩵ Floor[k] && k ≥ 0]

ⅇ-λX λX
k

k!
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w3[2] = Refine[

Probability[Y ⩵ n - k, Y  PoissonDistribution[λY]], k + Floor[-k + n] ⩵ n && k ≤ n]

ⅇ-λY λY
-k+n

-k + n!

The term in the denominator can also be calculated because Poisson processes are additive.

w3[3] =

Refine[Probability[Z ⩵ n , {Z  PoissonDistribution[λX + λY]}], n ⩵ Floor[n] && n ≥ 0]

ⅇ-λX-λY (λX + λY)
n

n!

Thus

w3[4] =
w3[1] w3[2]

w3[3]

n! λX
k λY

-k+n (λX + λY)
-n

k! -k + n!

This suggests a binomial distribution. Note

w3[5] = Refine[PDF[BinomialDistribution[n, p], k], 0 ≤ k ≤ n]

1 - p-k+n pk Binomial[n, k]

Using this result

w3[6] = w3[4] /. SolBinomial[n, k] ⩵
n!

k! n - k!
, n!

Binomial[n, k] λX
k λY

-k+n (λX + λY)
-n

I conclude 

[X = k X + Y = n]  Binomialn,
λX

λX + λY


To establish that the sum of Poisson stochastic variables is Poisson distributed I can also use

CharacteristicFunction[PoissonDistribution[λ], k]

ⅇ-1+ⅇⅈ k λ

The sum of Poisson variables X1 + X2 is the product of the characteristic functions
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CharacteristicFunction[PoissonDistribution[λ1], k]

CharacteristicFunction[PoissonDistribution[λ2], k] // Simplify

ⅇ-1+ⅇⅈ k (λ1+λ2)

4 Thinning of Poisson process

Raic Homogeneous Poisson Process - 5 

To gain some perspective, I start with a simulation

Moduleλ = 5, nSamples = 100 000, p = 1  4, , path, results, resultsS, resultsT,

 = PoissonDistribution[λ];

path = RandomVariate[, nSamples];

results = {#, If[RandomReal[] < p, "S", "T"]} & /@ path;

resultsS = Selectresults, #〚2〛 ⩵ "S" &;

resultsT = Selectresults, #〚2〛 ⩵ "T" &;

Histogram[{resultsS 〚All, 1〛, results〚All, 1〛}, Automatic,

"PDF", ChartLayout → "Stacked", ChartLegends → {"S", "T"} ]

0 5 10 15 20

0.05

0.10

0.15

0.20

0.25

0.30

0.35

S
T

These distributions appear similar.

a) The process S is successful with probability S — thus

(4 - 1) ℙ[S = k N = n] = (1 - p)-k+n pk Binomial[n, k]
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where k ≤ n. The total probability is 

(4 - 2) ℙ[S = k] =
n=k

∞

ℙ[S = k N = n]ℙ[N = n]

Since the arrivals are Poisson distributed with intensity λ

(4 - 3) ℙ[N = n] =
e-λ λn

n !

w4[1] = Refine[PDF[BinomialDistribution[n , p], k], 0 ≤ k ≤ n]

1 - p-k+n pk Binomial[n, k]

w4[2] = Refine[PDF[PoissonDistribution[λ], n], n ≥ 0]

ⅇ-λ λn

n!

w4[3] = Sum[w4[1] w4[2], {n, k, ∞}]

ⅇ-p λ pk λk

k!

Thus, we see

[S = k] =
ⅇ-λ p (λ p)k

k !

By analogy

[T = k] =
ⅇ-λ (1-p) (λ (1 - p))k

k !

b) We need to calculate

[S⋂ T] = [S][T]

Note

w4b[1] = Intersection[S ⩵ j, T ⩵ k]

Intersection[S ⩵ j, T ⩵ k]

Since n = j + k

w4b[2] = w4b[1] /. T ⩵ k →  == j + k

Intersection[S ⩵ j,  ⩵ j + k]
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w4b[3] = w4b[2] /. Intersection[A_, B_] → conditional[A, B] [B]

[ ⩵ j + k] conditional[S ⩵ j,  ⩵ j + k]

w4b[4] = w4b[3] /. conditional[S ⩵ j,  ⩵ j + k] → PDFBin[j + k, p, j] /.

[ ⩵ j + k] → PDFPois[λ, j + k]

PDFBin[j + k, p, j] PDFPois[λ, j + k]

w4b[5] = w4b[4] /.

PDFBin[j + k, p, j] → Refine[PDF[BinomialDistribution[j + k, p], j], 0 ≤ j ≤ j + k]

1 - pk pj Binomial[j + k, j] PDFPois[λ, j + k]

w4b[6] = w4b[5] /.

PDFPois[λ, j + k] → Refine[PDF[PoissonDistribution[λ], j + k], j + k ≥ 0] // Simplify

ⅇ-λ 1 - pk pj λj+k Binomial[j + k, j]

j + k!

This can be factored. Let q → 1 - p

Binomial[a_, b_] →
a!

b! a - b!

w4b[7] = w4b[6] /. 1 - p → q /. Exp[-λ] → Exp[-λ p] Exp[-λ q] /.

Binomial[a_, b_] →
a!

b! a - b!

ⅇ-p λ-q λ pj qk λj+k

j! k!

Note that the independence condition ℙ[S = j] ℙ[T = k]. I calculate

S = Refine[Probability[S ⩵ j, S  PoissonDistribution[λ p]], j ⩵ Floor[j] && j ≥ 0]

ⅇ-p λ (p λ)j

j!

T = Refine[Probability[T ⩵ k, T  PoissonDistribution[λ q]], k ⩵ Floor[k] && k ≥ 0]

ⅇ-q λ (q λ)k

k!

The expression w4b[7] is the same as the independence condition
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w4b[8] = w4b[7] - S T // PowerExpand

0

5 Memoryless property of exponential distribution

Raic Homogeneous Poisson Process - 6 

The calculations corresponding to the lhs is

Refine[Probability[T ≤ s + t  T > t, T  ExponentialDistribution[λ]],

t ≥ 0 && s > 0] // Expand

1 - ⅇ-s λ

and the rhs

Refine[Probability[T ≤ s, T  ExponentialDistribution[λ]], s > 0]

1 - ⅇ-s λ

The two probabilities are identical. The fact that these probabilities do not depend on the time parame-

ter t means that the exponential process is “memoryless.”

6 Distribution of min[X, Y], max[X, Y] for exponential distribution

Raic, Toman: Homogeneous Poisson Process - 7 

M cannot calculate this directly.

Probability[Min[X, Y],

{X  ExponentialDistribution[λ], Y  ExponentialDistribution[μ]}]

Probability[Min[X, Y],

{X  ExponentialDistribution[λ], Y  ExponentialDistribution[μ]}]
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However, the two conditions can be calculated separately

When X < Y

Probability[X ≤ Y,

{X  ExponentialDistribution[λX], Y  ExponentialDistribution[λY]}]

λX

λX + λY

When Y < X

Probability[Y ≤ X,

{X  ExponentialDistribution[λX], Y  ExponentialDistribution[λY]}]

λY

λX + λY

Thus,

[U] = [min(X , Y)] =
min[λX, λY]

λX + λY

The problem asks for the distribution.

For the minimum U = min[X, Y], the CDF is

w6[1] = Probability[X > u && Y > u, {X  ExponentialDistribution[λX],

Y  ExponentialDistribution[λY]}, Assumptions → {u ≥ 0}]

ⅇ-u λX-u λY

The PDF is

w6[2] = -D[#, u] &@w6[1]

-ⅇ-u λX-u λY (-λX - λY)

w6[2] = -D[w6[1], u] // Simplify

ⅇ-u (λX+λY) (λX + λY)

Clear[PDFU];

PDFU[u_, λX_, λY_] := ⅇ
-u (λX+λY)

(λX + λY)

For the maximum V = max[X, Y]

w6[3] = Probability[X < v && Y < v, {X  ExponentialDistribution[λX],

Y  ExponentialDistribution[λY]}, Assumptions → {v ≥ 0}]

1 - ⅇ-v λX 1 - ⅇ-v λY
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In this case, the PDF is

w6[4] = D[#, v] &@w6[3]

ⅇ-v λX 1 - ⅇ-v λY λX + ⅇ-v λY 1 - ⅇ-v λX λY

Clear[PDFV];

PDFV[u_, λX_, λY_] := ⅇ
-v λX

1 - ⅇ
-v λY

 λX + ⅇ
-v λY

1 - ⅇ
-v λX

 λY

I verify these derived PDFs against simulation
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Module[{λX = 1, λY = 2, nSamples = 10 000, ℰX, ℰY, pairsXY, U, V, lab, g},

{ℰX, ℰY} = {ExponentialDistribution[λX], ExponentialDistribution[λY]};

pairsXY = Transpose[{RandomVariate[ℰX, nSamples], RandomVariate[ℰY, nSamples]}];

U = Min[#] & /@ pairsXY;

V = Max[#] & /@ pairsXY;

lab = Stl@StringForm["Comparison PDF[Min[X, Y]] with simulation"];

g[1] = Histogram[U, {0.05}, "PDF", AxesLabel → {Stl["u"], Stl["PDF[U]"]},

PlotLabel → lab, ImageSize → {500, 200}];

g[2] = Plot[PDFU[u, λX, λY], {u, 0, Max[U]}, PlotStyle → Black, PlotRange → All];

lab = Stl@StringForm["Comparison PDF[Max[X, Y]] with simulation"];

g[3] = Histogram[V, {0.05}, "PDF", AxesLabel → {Stl["v"], Stl["PDF[V]"]},

PlotLabel → lab, ImageSize → {500, 200}];

g[4] = Plot[PDFV[v, λX, λY], {v, 0, Max[V]}, PlotStyle → Black];

Grid[{{Show[{g[1], g[2]}]}, {Show[{g[3], g[4]}]}}]]
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u0.0

0.5

1.0

1.5

2.0

2.5

3.0

PDF[U]
Comparison PDF[Min[X, Y]] with simulation
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Comparison PDF[Max[X, Y]] with simulation

7 Fire Brigade

Raic, Toman: Homogeneous Poisson Process - 8 
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The first call can be taken, then an intervention period begins. At first cut I consider the intervention time

ΔT to be constant. So, for the second call to not be diverted, it must be arrive at least ΔT after the first

call.  Interarrival times are distributed exponentially with parameter λ. The probability p that a call will be

diverted is 

pCallDiverted =

Probability[T ≤ ΔT, T  ExponentialDistribution[λ], Assumptions → {ΔT ≥ 0}]

1 - ⅇ-ΔT λ

A sequence of calls arrive each of which is diverted with probability p. Such sequences of Bernoulli

trials are modeled by a Geometric distribution —  defined as the distribution of the number of failures in

a sequence of Bernoulli trials before a success with probability p occurs.

In this context, failure corresponds to accepting a call, while diverting a call corresponds to success. For

constant ΔT.

Module[{},

 = GeometricDistribution[p];

Refine[PDF[, k], k ≥ 0]]

1 - pk p

In the stated problem, ΔT is not constant but uniformly distributed between 1/2 and 1 hour. In this case,

the probability ℙ[T ≤ ΔT] in that case.

ProbabilityT ≤ ΔT,

T  ExponentialDistribution[λ], ΔT  UniformDistribution1  2, 1

2 ⅇ-λ - 2 ⅇ-λ/2 + λ

λ

For the stated arrival rate of calls λ = 1/2
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p ⩵
2 ⅇ-λ - 2 ⅇ-λ/2 + λ

λ
/. λ → 1  2 // N

p ⩵ 0.31092

and the distribution of calls accepted before a diversion is

1 - pk p /. p →
2 ⅇ-λ - 2 ⅇ-λ/2 + λ

λ

2 ⅇ-λ - 2 ⅇ-λ/2 + λ 1 -
2 ⅇ-λ-2 ⅇ-λ2+λ

λ

k

λ

Clear[TheoreticalDistributionOfCallsAccepted];

TheoreticalDistributionOfCallsAccepted[λ_, kMax_] :=

Module{p, vals},

p =
2 ⅇ-λ - 2 ⅇ-λ/2 + λ

λ
// N;

vals = Table1 - pk p, {k, 0, kMax};

Transpose[{Range[1, kMax + 1 ], vals}]

Module{λ = 0.5, kMax = 10, dat, info},

dat = TheoreticalDistributionOfCallsAccepted[λ, kMax];

info = {#〚1〛 , NF3@#〚2〛} & /@ dat ;

PrependTo[info, {"nCalls accepted before diversion", "[nCalls accepted]"}];

LGrid[info, "test"]

test
nCalls accepted before diversion ℙ[nCalls accepted]

1 0.311
2 0.214
3 0.148
4 0.102
5 0.070
6 0.048
7 0.033
8 0.023
9 0.016

10 0.011
11 0.008

Checking against simulation
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Moduleλ = 1  2, α = 1  2, β = 1, nTrials = 20,

nSamples = 1000, kMax = 10, analyticalResults, ℰ, , Tvals,

ΔTvals, resultsSim, resultTrial, estimates, MCEstimate,

analyticalResults = TheoreticalDistributionOfCallsAccepted1  2, kMax;

ℰ = ExponentialDistribution[λ];

 = UniformDistribution[{α, β}];

resultsSim = Table

(* Crude - I just make sure nTrials is large enough for a diversion to occur *)

Tvals = RandomVariate[ℰ, nTrials];

ΔTvals = RandomVariate[, nTrials];

resultTrial =

Boole[#〚1〛 < #〚2〛] & /@ Transpose[{Tvals, ΔTvals}], {nSamples};

MCEstimate[pos_] :=

Module{d}, d = Boole[FirstPosition[#, 1]〚1〛 ⩵ pos] & /@ resultsSim;

pos, Mean[d], StandardDeviation[d]  Length[d]  // N;

estimates = MCEstimate[#] & /@ Range[1, kMax + 1];

Module[{Bar, lab},

lab =

Stl@StringForm["Probability nCalls accepted before diversion λ = ``\nred bars

represent 2sd confidence band - nSamples = ``", NF2@N@λ, nSamples];

Bar[{x_, y_, dy_}] := {Red, Thick, Line[{{x, y - 2 dy}, {x, y + 2 dy}}]};

ListPlot[analyticalResults, Prolog → Bar /@ estimates, PlotStyle → Black,

AxesLabel → {Stl["nCalls"], Stl["[accepted]"]}, PlotLabel → lab]]

2 4 6 8 10
nCalls

0.05

0.10

0.15

0.20

0.25

0.30

ℙ[accepted]

Probability nCalls accepted before diversion λ = 0.50

red bars represent 2sd confidence band - nSamples = 1000

8 Conditional Poisson arrivals

Raic, Toman: Homogeneous Poisson Process - 9 
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a)  For s < t, what is ℙ[S≤ s|(t)=1]? 

[S ≤ s (t) = 1] = [N(s) ≥ s ⋂ (t) = 1]

This probability involves a time related event and a counting related event. To make progress, one must

reexpress the time event as a counting event. For the first arrival event occurring at time T.

[T ≤ t] = [[t] ≥ 1]

Using this result

[S ≤ s (t) = 1] = [(s) ≥ s (t) = 1]

and then

[S ≤ s (t) = 1] = [(s) ≥ s (t) = 1]

= [(s) = 1 (t) = 1]

The last  statement is  a bit  mysterious.  Since we know that  [s]  ≥  1  means a counting event  has

occurred and we are given that that event occurred at t = 1, then the event (s) ≥ s is equivalent to the

event [s] = 1.

Proceeding

[S ≤ s (t) = 1] = [(s) ≥ s (t) = 1] = [(s) = 1 (t) = 1] =
[(s) = 1 ⋂ (t) = 1]

[(t) = 1]

=
[(s) = 1 ⋂ (t) - (s) = 0]

[(t) = 1]

This last step is often used in this type of calculation. It allows the independence of time intervals for

Poisson processes to be evoked

[S ≤ s (t) = 1] = [(s) ≥ s (t) = 1] = [(s) = 1 (t) = 1] =
[(s) = 1 ⋂ (t) = 1]

[(t) = 1]

=
[(s) = 1 ⋂ (t) - (s) = 0]

[(t) = 1]

=
[(s) = 1](t) - (s) = 0]

[(t) = 1]

Note
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{Probability[x[t] ⩵ 1, x  PoissonProcess[λ]],

Probability[x[t - s] ⩵ 0, x  PoissonProcess[λ]]}

ⅇ-t λ t λ, ⅇ(s-t) λ

Using these probabilities

[S ≤ s (t) = 1] = [(s) ≥ s (t) = 1] = [(s) = 1 (t) = 1] =
[(s) = 1 ⋂ (t) = 1]

[(t) = 1]

=
[(s) = 1 ⋂ (t) - (s) = 0]

[(t) = 1]

=
[(s) = 1](t) - (s) = 0]

[(t) = 1]

=
ⅇ-s λ s λ ⅇ-(t-s) λ 

ⅇ-t λ t λ
=
s

t

b) There are two events S1 and S2. What are ℙ[S1≤ s|(t)=2] and ℙ[S2≤ s|(t)=2]? 

The calculation of the second term is analogous to the calculation in part a)

[S2 ≤ s (t) = 2] =
[N(s) = 2 ⋂ (t) = 2]

[(t) = 2]
=

[(s) = 2][(t) - (s) = 0]

[(t) = 2]

{Probability[x[t] ⩵ 2, x  PoissonProcess[λ]],

Probability[x[t - s] ⩵ 0, x  PoissonProcess[λ]]}


1

2
ⅇ-t λ t2 λ2, ⅇ(s-t) λ

[S2 ≤ s (t) = 2] =

[(s) ≥ 2 (t) = 2] =
[N(s) = 2 ⋂ (t) = 2]

[(t) = 2]
=

[(s) = 2][(t) - (s) = 0]

[(t) = 2]

=

1

2
ⅇ-s λ s2 λ2 ⅇ(s-t) λ


1

2
ⅇ-t λ t2 λ2

=
s2

t2

On the other hand, the first term has two parts that must be calculated. 
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[S1 ≤ s (t) = 2] = [(s) ≥ 1 (t) = 2] =
[(s) ≥ 1⋂(t) = 2]

[(t) = 2]

= ([(s) = 1][(t) - (s) = 1] + [(s) = 2][(t) - (s) = 0]) /[(t) = 2]

=
ⅇ-s λ s λ ⅇ(s-t) λ λ(t - s)


1

2
ⅇ-t λ t2 λ2

+

1

2
ⅇ-s λ s2 λ2 ⅇ(s-t) λ


1

2
ⅇ-t λ t2 λ2

= 2
s (t - s)

t2
+
s2

t2

= 2
s

t
-
s2

t2

Module{t = 1},

Plot
s2

t2
,

2 s t - s2

t2
, {s, 0, t}, AxesLabel → {Stl["s"], Stl["CDF"]},

PlotStyle → {Blue, Red}, PlotLegends → {"[S2≤s|N(t) = 2]", "[S1≤s|N(t) = 2]"}
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s
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CDF

ℙ[S2≤s|N(t) = 2]

ℙ[S1≤s|N(t) = 2]

Check these results against simulation
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Module{λ = 2, t = 1, nSamples = 1000, , results,

resultsConditional, S1vals, S2vals, arrivalTimes, ℋ, lab},

 = PoissonProcess[λ];

results = RandomFunction[, {0, t}, nSamples];

(* Select those results that are conditional on Nt = 2 *)

resultsConditional = Selectresults["Paths"], #〚-1, 2〛 ⩵ 2 & ;

(* list of first arrival times *)

S1vals = #〚2〛 & /@ resultsConditional;

S1vals = S1vals 〚All, 1〛 ;

(* list of second arrival times *)

S2vals = #〚3〛 & /@ resultsConditional;

S2vals = S2vals 〚All, 1〛 ;

ℋ[1] = EmpiricalDistribution[S1vals];

ℋ[2] = EmpiricalDistribution[S2vals];

lab = Stl["arrival times in (0,t) conditional on Nt = 2\n

CDF[S1 ≤ s Nt = 2] Red, CDF[S2 ≤ s|Nt = 2] Blue"];

DiscretePlot[{CDF[ℋ[1], s], CDF[ℋ[2], s]}, {s, 0, t, 0.01},

PlotStyle → {Red, Blue}, AxesLabel → {Stl["s"], Stl["CDF"]}, PlotLabel → lab]

0.2 0.4 0.6 0.8 1.0
s

0.2

0.4

0.6

0.8

1.0

CDF

arrival times in (0,t) conditional on Nt = 2

CDF[S1 ≤ s Nt = 2] Red, CDF[S2 ≤ s|Nt = 2] Blue

9 Total waiting time

Raic, Toman: Homogeneous Poisson Process - 10 

The expected time for passenger to arrive is
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Tarrival ⩵ Expectation[x[s], x  PoissonProcess[λ]]

Tarrival ⩵ s λ

The waiting time is

W = 
0

t

Tarrival(s) ⅆs

So

W ⩵ Integrate[λ s, {s, 0, t}]

W ⩵
t2 λ

2

10 Poisson shocks

Raic, Toman: Homogeneous Poisson Process - 11

This is similar to the previous problem. The expected arrival time is

Tarrival ⩵ Expectation[x[s], x  PoissonProcess[λ]]

Tarrival ⩵ s λ

In this case we want the cumulative shock  at time t.

shock = 
0

t

Exp[-θ(t - Tarrival(s))] ⅆs

or

shock ⩵ IntegrateExp-θ t - λ s, {s, 0, t} // Simplify

shock ⩵
ⅇ-t θ -1 + ⅇt θ λ

θ λ

I confirm with a simulation. I use the following function to generate arrival times.

30     Poisson process problems 07-12-17.nb

copyright © N T Gladd 2016



(* Simulation of Poisson arrival times *)

Clear[SimulateArrivalTimes];

SimulateArrivalTimes[λ_, tMax_, nSamples_] :=

Module[{result},

result = RandomFunction[PoissonProcess[λ], {0, tMax}, nSamples]["Paths"];

result = #〚2 ;; -2, 1〛 & /@ result ]

For example,

Module[{λ = 1, tMax = 10, nSamples = 1 },

SimulateArrivalTimes[λ, tMax, nSamples]]

{{4.84707, 7.08518, 9.32553, 9.39195, 9.88382, 9.94405}}

Note: I could also have simulated the arrival times as the sum of exponential random variables

Module[{λ = 1, tMax = 10, nSamples = 10, variates , arrivalTimes},

variates = RandomVariate[ExponentialDistribution[λ], nSamples];

arrivalTimes = FoldList[Plus, 0, variates]〚2 ;; -1〛]

{1.10836, 2.96512, 3.3785, 6.0416, 7.48959, 7.60273, 8.00323, 11.0246, 11.1447, 11.7115}

I compare theory and simulation for nominal parameter values.

Moduleλ = 1 (* per hour *), tMax = 12 (* hours *), nSamples = 1000, θ = 1  10,

times, shockEffects, cumulativeShockEffects, theory, info, lab, ShockEffect,

ShockEffect[startTimes_] := Exp-θ tMax - # & /@ startTimes;

times = SimulateArrivalTimes[λ, tMax, nSamples];

shockEffects = ShockEffect /@ times;

cumulativeShockEffects = Total /@ shockEffects;

theory =
ⅇ-tMax θ -1 + ⅇtMax θ λ

θ λ
;

info = N@theory, Mean[cumulativeShockEffects],

StandardDeviation[cumulativeShockEffects]  nSamples  ;

PrependTo[info, {"theory", "mean", "sim error"}];

lab =

StringForm["expected total effect of simulated shocks\nλ = `` tMax = `` θ = ``

nSamples = ``", λ, tMax, θ, nSamples];

LGrid[

info,

lab]

expected total effect of simulated shocks

λ = 1 tMax = 12 θ =
1

10
nSamples = 1000

theory mean sim error
6.98806 6.96522 0.0691489
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11 Hen crossing road

Raic, Toman: Homogeneous Poisson Process - 12

The description of how the process starts seems ambiguous. I interpret it as follows.

 The chicken arrives at the edge of the roads and observes a car coming. The time it takes the

car to reach the point where the chicken wants to cross is T1.

 If T1 > Tc the chicken crosses immediately so the waiting time for this case is Twait = Tc

 If T1 ≤ Tc, the chick waits for the first car to pass, then crosses when possible.

Another way of interpreting this problem is that the distribution of cars along the road is determined by a

Poisson process. The chicken, however, can only see the next car and make his decision to cross

based on its time to arrival at his location.

Solution method based on counting

The probability that the chicken can cross is easily calculated 

w12A[1] = pCrossSafely ==

Refine[Probability[T1 > TC, T1  ExponentialDistribution[λ]], TC ≥ 0]

pCrossSafely ⩵ ⅇ-TC λ

and, if it is save to cross, the crossing time is just TC

In general, the chicken may have to wait for several cars to pass before it is safe to cross. Assume that

it is the appearance of the th car that allows the chicken to cross. Thus, the waiting time is

Twait = T1 + T2 + ... + T-1 + Tc

where the T1, etc are random times and  is also a random variable. The expected time of crossing in

this set up is

[Twait  = n] = [T1 T1 ≤ Tc] + ... + [Tn-1 Tn-1 ≤ Tc] + Tc

= ( - 1) [Ti Ti ≤ 1] + Tc

Now,  is a random variable distributed geometrically 

[[Twait  = n]] =

[Twait] = [( - 1)] [Ti Ti ≤ Tc] + Tc

The individual waiting times are
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w12A[2] = ["Ti|Ti≤Tc"] ⩵

Refine[Expectation[TI  TI ≤ TC, TI  ExponentialDistribution[λ]], TC > 0]

[Ti|Ti≤Tc] ⩵
-1 + ⅇTC λ - TC λ

-1 + ⅇTC λ λ

Since the geometric distribution is the number of failures before success with probability pCrossSafely

w12A[3] =

[" = n-1"] == Expectation[ = n,   GeometricDistribution[pCrossSafely]]

[ = n-1] ⩵
1 - pCrossSafely

pCrossSafely

Calculating the waiting time

w12A[4] = [" = n-1"] ["Ti|Ti≤Tc"] + TC /. w12A[2] // ER /. w12A[3] // ER

TC +
1 - pCrossSafely -1 + ⅇTC λ - TC λ

-1 + ⅇTC λ pCrossSafely λ

w12A[5] = Twait ⩵ w12A[4] /. w12A[1] // ER // Simplify

Twait ⩵
-1 + ⅇTC λ

λ

Solution method based on renewal

After the first car passes, the chicken is faced with exactly the same situation.

[Twait T1] = Tc  {T1 ≥ Tc} + (T1 + [Twait])  {T1 < Tc}

Take the expectation with respect T1

T1[[Twait T1]] = T1[Tc  {T1 ≥ Tc}] + T1[(T1 + [Twait])  {T1 < Tc}]

[Twait] = Tc T1[ {T1 ≥ Tc}] + T1[T1  {T1 < Tc}] + T1[ [Twait]  {T1 < Tc}]

[Twait] = Tc [T1 ≥ Tc] + T1[T1  {T1 < Tc}] + [Twait][ T1 < Tc]

Note ℙ[T1 ≥ Tc] and ℙ[ T1 < Tc] are given by

{Refine[Probability[T1 ≥ TC, T1  ExponentialDistribution[λ]], TC ≥ 0],

Refine[Probability[T1 < TC, T1  ExponentialDistribution[λ]], TC ≥ 0]}

ⅇ-TC λ, 1 - ⅇ-TC λ

Also
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Refine[Expectation[T1 Boole[T1 < TC], T1  ExponentialDistribution[λ]], TC > 0] //

Simplify

ⅇ-TC λ -1 + ⅇTC λ - TC λ

λ

w12B[1] = [Twait] ⩵ TC ⅇ-TC λ
+

ⅇ-TC λ -1 + ⅇTC λ - TC λ

λ
+ [Twait] 1 - ⅇ

-TC λ


[Twait] ⩵ ⅇ-TC λ TC +
ⅇ-TC λ -1 + ⅇTC λ - TC λ

λ
+ 1 - ⅇ-TC λ [Twait]

w12B[2] = Solve[w12B[1], [Twait]]〚1, 1〛

[Twait] →
-1 + ⅇTC λ

λ

which is the same result as obtained with the counting method.

12 Waiting for a reward

Raic, Toman : Homogeneous Poisson Process - 13

This is actually just a restatement of the chicken crossing the road problem. 

The probability a prize is won on any given drawing is p = ℙ[T < δ].

Refine[Probability[T < δ, T  ExponentialDistribution[λ]], δ ≥ 0]

1 - ⅇ-δ λ

Suppose the drawing is won on the nth attempt. Then

[T  = n] = (n - 1) [ΔT ΔT ≥ δ] + [ΔT ΔT < δ]

We have
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Refine[Expectation[T  T ≥ δ, T  ExponentialDistribution[λ]], δ > 0] // Expand

δ +
1

λ

Also,

Refine[Expectation[T  T < δ, T  ExponentialDistribution[λ]], δ > 0] // Simplify

1 - ⅇδ λ + δ λ

λ - ⅇδ λ λ

Take the expectation with respect to 

[[T  = n]] = [(n - 1)] [ΔT  {ΔT ≥ δ}] + [ΔT  {ΔT < δ}]

[T ] = [(n - 1)] [ΔT  {ΔT ≥ δ}] + [ΔT  {ΔT < δ}]

Expectation[,   GeometricDistribution[p]]

1 - p

p

w13[1] =
1 - p

p
δ +

1

λ
+

1 - ⅇδ λ + δ λ

λ - ⅇδ λ λ

1 - p δ +
1

λ


p
+
1 - ⅇδ λ + δ λ

λ - ⅇδ λ λ

Finally,

w13[2] = w13[1] /. p → 1 - ⅇ-δ λ
// Simplify

ⅇδ λ

-1 + ⅇδ λ λ

which is Raic’s result.

13 Trucks and cars

Raic, Toman : Marking, Thinning, Superposition - 1
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These are straightforward calculations

Part a)

Probability 

Module[{λT = 0.1 × 40, T, result},

T = PoissonProcess[λT];

result = Probability[x[1] ≥ 1, x  T]]

0.981684

Part b) The expected number of cars is independent of how many trucks have passed

Module[{λT = 0.1 × 40, λC = 0.9 × 40, C, result},

C = PoissonProcess[λC];

result = Expectation[x[1], x  C]]

36.

Part c) We have to consider the number of ways the cars and trucks could be arranged. 

Module{nVehicles = 50, nCars = 45, nTrucks = 5, Car = 0.9, Truck = 0.1},

Binomial[50, 5] TrucknTrucks 1 - TrucknVehicles - nTrucks


0.184925

Part d)

Module[{λT = 4, λC = 36, T, NumberCars, TimeOneTruck},

T = Expectation[T, T  ExponentialDistribution[λT]];

Print["TimeOneTruck = ", T];

NumberCars = Expectation[c[T], c  PoissonProcess[λC]];

Print["NumberCars = ", NumberCars]]
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TimeOneTruck =
1

4

NumberCars = 9

14 Light bulb failures

Raic, Toman : Marking, Thinning, Superposition - 2

a) What is the minimum of the two expected times?

ModuleλBurnout = 1  200, λReplacement = 1  100,

Expectation[Min[x, y], {x  ExponentialDistribution[λBurnout],

y  ExponentialDistribution[λReplacement]}] // N

66.6667

b) The expected time to burn out is 200 days. The expected time to be replaced is 100 days.

ModuleλBurnout = 1  200, λReplacement = 1  100,

Probability[x < y, {x  ExponentialDistribution[λBurnout],

y  ExponentialDistribution[λReplacement]}]

1

3

15 Three actors

Raic, Toman : Marking, Thinning, Superposition - 3

The independent expected time required to hire 1 man is 
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Expectation[M, M  ExponentialDistribution[λM]]

1

λM

while the independent expected time to hire two women is

Expectation[ W1 + W2,

{W1  ExponentialDistribution[λW], W2  ExponentialDistribution[λW]}]

2

λW

In this case the events are dependent. The quantity of interest is the maximum of M and W1 + W2

w15[1] = Expectation[Max[M, W1 + W2], {M  ExponentialDistribution[λM],

W1  ExponentialDistribution[λW], W2  ExponentialDistribution[λW]}]

2 λM3 + 4 λM2 λW + 2 λM λW2 + λW3

λM λW (λM + λW)2

For the supplied intensities

w15[2] = w15[1] /. {λM → 2, λW → 1} // N

2.05556

I  could also use the fact that the sum of exponentially distributed times is distributed like an Erlang

distribution

w15[3] = Expectation[Max[M, W],

{M  ExponentialDistribution[λM], W  ErlangDistribution[2, λW]}]

2 λM3 + 4 λM2 λW + 2 λM λW2 + λW3

λM λW (λM + λW)2

16 Used car

Raic, Toman : Marking, Thinning, Superposition - 4
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Part a) The expected time for the wife to buy is (by two different methods)

{Expectation[TW, TW  ErlangDistribution[3, λW]],

Expectation[T1 + T2 + T3, {T1  ExponentialDistribution[λW],

T2  ExponentialDistribution[λW], T3  ExponentialDistribution[λW]}]}


3

λW
,

3

λW


The expected time for the husband to buy is

Expectation[TH, TH  ErlangDistribution[2, λH]]

2

λH

The  probability that the wife buys is the probability of the event TW > TH

Probability[TW > TH,

{TW  ErlangDistribution[3, λW], TH  ErlangDistribution[2, λH]}]

λH2 λH2 + 4 λH λW + 6 λW2

(λH + λW)4

Part b)

Expectation[Min[TW , TH],

{TW  ErlangDistribution[3, λW], TH  ErlangDistribution[2, λH]}]

2 λH3 + 8 λH2 λW + 12 λH λW2 + 3 λW3

(λH + λW)4

I check the probability calculation against simulation
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Module{kW = 3, kH = 2, λW = 3, λH = 2, nSamples = 4000, simResults, lab, Bar},

Bar[{λ_, mean_, error_}] := Line[{{λ, mean - 2 error}, {λ, mean + 2 error}}];

simResults =

Table[Flatten@{λW, Simulation[kW, kH, λW, λH, nSamples]}, {λW, 2, 5}] // N;

lab = Stl["Theory confirmed by simulation"];

Plot
λH2 λH2 + 4 λH λW + 6 λW2

(λH + λW)4
,

{λW, 1, 5}, AxesLabel → {Stl["λW"], Stl["[TW > TH]"]},

Epilog → {RED, Bar /@ simResults}, PlotLabel → lab

2 3 4 5
λW

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ℙ[TW > TH]
Theory confirmed by simulation

Clear[Simulation];

Simulation[kW_, kH_, λW_, λH_, nSamples_] :=

Module{ℰW, ℰH, timePairs, simResults, simMean, simError},

ℰW = ExponentialDistribution[λW];

ℰH = ExponentialDistribution[λH];

timePairs =

Table[Total /@ {RandomVariate[ℰW, kW], RandomVariate[ℰH, kH]}, {nSamples}];

simResults = Boole[#〚1〛 > #〚2〛] & /@ timePairs;

{simMean, simError} =

Mean[simResults], StandardDeviation[simResults]  nSamples  // N

17 Comparing two Poisson processes

Raic, Toman : Marking, Thinning, Superposition - 5

Part a)

For two merged processed, the probability that T1 occurs before T2 is
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w[1] = p1 ⩵ Probability[T1 < T2,

{T1  ExponentialDistribution[λ1], T2  ExponentialDistribution[λ2]}]

p1 ⩵
λ1

λ1 + λ2

and similarly, 

w[2] = p2 ⩵ Probability[T2 < T1,

{T1  ExponentialDistribution[λ1], T2  ExponentialDistribution[λ2]}]

p2 ⩵
λ2

λ1 + λ2

Thus the probability that an event in process2 occurs before an event in process1 is just p2 p1, in

analogy to Bernoulli trials.

p1 p2 /. w[1] // ER /. w[2] // ER

λ1 λ2

λ1 + λ22

Part b) 

Consider that arrival events occurring in the second process are “failures” that occur before a process 1

arrival event that constitutes a “success”. The probability of success is p = 
λ1

λ1+λ2
. The GeometricDis-

tribution describes the number of such failures.

Expectation[x, x  GeometricDistribution[p]] /. p → λ1  λ1 + λ2 // Simplify

λ2

λ1

It is also constructive to work through Raic’s second method of solving this problem. Consider the event

X2 = {number of arrivals in process 2 before first arrival in process 1}

Then denote by T1 the first arrival time in process 1.  We are interested in

[X2 = 1 T1]

The probability of exactly 1 arrival is

wb[1] = Probability[X2[T1] == 1, X2  PoissonProcess[λ2]]

ⅇ-T1 λ2 T1 λ2

But T1 is exponentially distributed.
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wb[2] = Expectation[wb[1], T1  ExponentialDistribution[λ1]]

λ1 λ2

λ1 + λ22

Similar logic is used for the expected number of arrivals

wb[3] = Expectation[X2[T1], X2  PoissonProcess[λ2]]

T1 λ2

wb[4] = Expectation[wb[3], T1  ExponentialDistribution[λ1]]

λ2

λ1

18 Arriving students

Raic, Toman : Marking, Thinning, Superposition - 5

This is an exercise in the logic and manipulation of conditional expectations. I follow Raic’s argument.

There are two possibilities — a financial student arrives first with probability pF  or a general student

arrives first with probability pG. Define the event A that one student arrived in the first half hour, AF the

event that that student was a financial student, etc. Then

[AF A] = pF =
λF

λF + λG
, [AG A] = pG =

λG

λF + λG

Denote TF the time that the first financial student arrived. If we are given that AF is true, then the arrival

could have occurred anytime before TS = 1/2. So

TF AF  UniformDistribution[0, TS]

On the other hand, if AG is true then TF is exponentially distributed.
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(TF - TS) AG  ExponentialDistribution[λF]

From these observations, the specific time TS enters the the calculations. 

The specific calculation proceeds

[TF A] =
[TF⋂ A]

[A]
=

[TF⋂ AF] + [TF⋂ AG]

[A]

=
[AF]

[A]
[TF AF] +

[AG]

[A]
[TF AG]

Next note

[AF A] =
[AF⋂ A]

[A]
=

[AF]

[A]
(becauseΑF is part of A)

So

[TF A] =
[AF]

[A]
[TF AF] +

[AG]

[A]
[TF AG]

= [AF A] [TF AF] + [AG A] [TF AG]

= pF [TF AF] + pG [TF AG]

The first expectation is

["TF|AF"] ⩵ Expectation[TF, TF  UniformDistribution[{0, TS}]]

[TF|AF] ⩵
TS

2

Note that

[TF AG] = [TS + (TF - TS) AG] = TS + [(TF - TS) AG]

This second expectation is

["TF-TS|AG"] ⩵ Expectation[TFS, TFS  ExponentialDistribution[λF]]

[TF-TS|AG] ⩵
1

λF

Thus

Poisson process problems 07-12-17.nb     43

copyright © N T Gladd 2016



[TF A]

= pF [TF AF] + pG [TF AG]

= pF
TS

2
+ pG TS +

1

λF

=
λF

λF + λG

TS

2
+

λG

λF + λG
TS +

1

λF

19 Distribution of relative arrivals of two Poisson processes

Raic, Toman : Marking, Thinning, Superposition - 7

Since the arrivals in the two processes can be considered to be Bernoulli trials with probabilities

p1 =
λ1

λ1 + λ2
p2 =

λ2

λ1 + λ2

this is just an exercise in constructing a binominal distribution. For there to be n process 1 events before

m process 2 events.

[n process 1 events beforem process 2 events] = 
k=n

n +m -1

Binomial[n + m - 1, k] p1
k p2

n+m-1 - k

20 Probability of reaching a point in space

This is easy.  It takes nTotal = i + j steps to get to {i, j}. There are Binomial[i + j, i] possible paths. The

probability of an X step is pX = λX/(λX + λY) and the analogous for Y. The probability of reaching {i, j} is

[X(t) = i, Y(t) = j] = Binomial[i + j, i]
λX

λX + λY

i λX

λX + λY

j

I check against simulation. 

Clear[Theoretical];

Theoretical[nX_, nY_, pX_, pY_] := Binomial[nX + nY, nX] pXnX pYnY
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Module{λX = 1, λY = 2, nSteps = 40, nY = 4, nSamples = 4000, pX, pY, results},

{pX, pY} = {λX, λY} / (λX + λY);

results = Table[Flatten[{nX, N@Theoretical[nX, nY, pX, pY],

SimModel[nX, nY, λX, λY, nSteps, nSamples]}],

{nX, 2, 4}];

Module{info, params, bars, Bar, G},

Bar[{λ_, th_, mean_, error_}] := Line[{{λ, mean - 2 error}, {λ, mean + 2 error}}];

info = {#〚1〛, NF3@#〚2〛, NF3@#〚3〛, NF3@#〚4〛} & /@ results;

PrependTo[info, {"nX", "theory", "sim", "simError"}];

params = {{"λX", λX , {5, 2}}, {"λY", λY , {5, 2}}, {"nSteps", nSteps , {5, 0}},

{"nY", nY , {5, 0}}, {"nSamples", nSamples , {5, 0}}};

G[0] = Stl[StringForm["2-D Poisson random walk passing {nX, nY}"]];

G[1] = ParameterTable[params];

G[2] = LGrid[info, ""];

bars = {RED, Bar /@ results};

G[3] = ListLinePlot[results 〚All, {1, 2}〛, PlotMarkers →

{ChartElementData["SimpleMarkers"]〚6〛}, PlotStyle → Black , Prolog → bars,

AxesLabel → {Stl["nX"], Stl["[nX, nY]"]}, PlotRange → {Automatic, {0, 0.5}}];

Grid[{{G[0], SpanFromLeft}, {G[1], G[2]}, {G[3], SpanFromLeft}}, Frame → All]

2-D Poisson random walk passing {nX, nY}

λX 1.00

λY 2.00

nSteps 40

nY 4

nSamples 4000

nX theory sim simError
2 0.329 0.341 0.007
3 0.256 0.259 0.007
4 0.171 0.169 0.006

2.0 2.5 3.0 3.5 4.0
nX0.0

0.1

0.2

0.3

0.4

0.5
ℙ[nX, nY]

Clear[SimModel];

SimModel[nX_, nY_, λX_, λY_, nSteps_, nSamples_] :=

Module{pX, pY, X, Y, paths, results, mean, errorMC},

{pX, pY} = {λX, λY} / (λX + λY);

{X, Y} = {PoissonProcess[pX], PoissonProcess[pY]};

paths = Table[GenerateMergedPath[λX, λY, pX, pY, X, Y, nSteps], {nSamples}];

results = TargetPathQ[#, nX, nY] & /@ paths;

{mean, errorMC} = Mean[results], StandardDeviation[results]  nSamples  // N;

{mean, errorMC}

TargetPathQ is true if the path touches {nX, nY}
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Clear[TargetPathQ];

TargetPathQ[path_, nX_, nY_] :=

BooleLength@Selectpath 〚1 ;; nX + nY〛, # 〚2〛 ⩵ "X" &  ⩵ nX

Clear[GenerateMergedPath];

GenerateMergedPath[λX_, λY_, pX_, pY_, X_, Y_, nSteps_] :=

Module{pathX, pathY, pathMerged},

pathX = RandomFunction[X, {0, nSteps}]["Paths"]〚1〛〚2 ;; -2〛 ;

pathX = {#〚1〛 , "X"} & /@ pathX;

pathY = RandomFunction[Y, {0, nSteps}]["Paths"]〚1〛〚2 ;; -2〛 ;

pathY = {#〚1〛 , "Y"} & /@ pathY;

(* Join the paths and sort by arrival time *)

pathMerged = SortJoin[pathX, pathY], #1 〚1〛 < #2 〚1〛 & 

21 London Bombs

From Introduction to Probability, Grinstead and Snell (available on web)
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Modulep = 1  100, nSamples = 400, λ, , ℋ, values, counts, rect, markers, G,

λ = p nSamples;

 = UniformDistribution[{{0, 1}, {0, 1}}];

values = RandomVariate[, nSamples];

counts = TableLength@

Selectvalues, 0.1 i < #〚1〛 ≤ 0.1 i + 1 && 0.1 j < #〚2〛 ≤ 0.1 j + 1 &,

{i, 0, 9}, {j, 0, 9};

markers = {Blue, Table[Text[ToString[counts〚i, j〛], {0.1 i - 0.05, 0.1 j - 0.05}],

{i, 1, 10}, {j, 1, 10}]} ;

rect = {Pink, Rectangle[{0.2, 0.3}, {0.3, 0.4}]};

G[1] =

Graphics[{rect, markers, {Point /@ values}}, Axes → Automatic, AspectRatio → 1,

GridLines → {Table[0.1 i, {i, 0, 10}], Table[0.1 i, {i, 0, 10}]},

PlotRange → {{0, 1}, {0, 1}}, ImageSize → 300];

ℋ = HistogramDistribution[Flatten@counts];

G[2] = DiscretePlotPDF[ℋ, k],
ⅇ-λ λk

k!
,

{k, 0, 10}, PlotLegends → {"sim", "Poisson"}, ImageSize → 300;

Grid[{{G[1], G[2]}}]
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22 Store Credit (compound Poisson process)

From Introductory Probability - Gravner UCD p 137 (available on web)

This is purely an application of formulae derived for expectation and variance of a composite Poisson

process. See Poisson Process Basics 04-06-17
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Expectation and variance

[S] = 
n=0

∞

n μX [ = n] = μX 
n=0

∞

n[ = n] = μX [] = [X1] []

[S] = σX
2 [] + μX

2 []

= [X] [] + [X]2 []

w[1] = {[] → Expectation[x, x  PoissonDistribution[λ]],

[] → Variance[PoissonDistribution[λ]]}

{[] → λ, [] → λ}

w[2] = {[X] → Expectation[x, x  UniformDistribution[{a, b}]],

[X] → Variance[ UniformDistribution[{a, b}]]}

[X] →
a + b

2
, [X] →

1

12
-a + b2

w[3] = [] [X], [X] [] + [X]2 []

[X] [], [] [X] + [X]2 []

w[4] = w[3] /. w[1] /. w[2]


1

2
a + b λ,

1

12
-a + b2 λ +

1

4
a + b2 λ

w[5] = w[4] /. {a → 0, b → 100, λ → 10} // N

{500., 33 333.3}

which agrees with Gravner

1002  12. 10 + 502 × 10

33 333.3

Mathematica has built-in functionality for compound Poisson processes

Module[{},

 = CompoundPoissonDistribution[λ, UniformDistribution[{a, b}]];

{{Mean[], Variance[]},

{Mean[], Variance[]} /. {a → 0, b → 100, λ → 10} // N}] // Simplify


1

2
a + b λ,

1

3
a2 + a b + b2 λ, {500., 33 333.3}
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Since this class of problems is important, I’ll perform a simulation.

Module[{a = 0, b = 100, λ = 10, nSamples = 4000, , pathList, lab},

 = CompoundPoissonDistribution[λ, UniformDistribution[{a, b}]];

pathList = RandomVariate[, nSamples];

lab = Stl@StringForm["[] = ``, [] = ``",

Round@Mean[pathList], Round@Variance[pathList]];

Histogram[pathList, {50}, PlotLabel → lab]]

0 200 400 600 800 1000 1200

100

200

300

400

[] = 496, [] = 33617

23 Poisson and the Law

Introductory Probability - Gravner UCD p 52  Famous People vs Collins case in LA 1968. (available on

web)

I just follow Gravner’s treatment. From a large number of people, n, suppose some modest number of

people, , have with probability p the characteristics identified by the witness. Those people form the

pool of suspects. One of them, , is the actual criminal. Choose  to be a person randomly arrested

from the pool of suspects. What is the probability that  = ?

[ =   ≥ 1] =
[ =  ⋂  ≥ 1]

[ ≥ 1]

Now
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[ =  ⋂  ≥ 1] = 
k=1

∞

[ =   = k][ = k]

Since there is no other evidence, each of suspects is equally guilty,

[ =   = k] =
1

k

The probability ℙ[ = k] is binomial, but for small p can be approximated by Poisson with λ = n p

[ =  ⋂  ≥ 1] = e-λ 
k=1

∞ λk

k k !

As a representative parameter value for λ given small p and large n, choose λ = 1

Module{λ = 1, lim, lab},

lim = Exp[-λ] Sum
λk

k k!
, {k, 1, 10};

lab = Stl@StringForm["Probability of guilt is ``", NF1@N[lim]];

DiscretePlotExp[-λ] Sum
λk

k k!
, {k, 1, kMax}, {kMax, 1, 5},

Epilog → Line[{{0, lim}, {20, lim}}], PlotLabel → lab 

2 3 4 5

0.38

0.40

0.42

0.44

0.46

0.48

Probability of guilt is 0.5

This result disagrees with Gravner — but there appears to be an error in the formula
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Where does that 1 - Exp[-λ] is the denominator come from ???

This problem is called the “prosecutor’s fallacy”

https://www.youtube.com/watch?v=s2G5MQIT6Jk
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