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Poisson process problems 07-12-17
N. T. Gladd

Initialization: Be sure the files NTGStylesheet2.nb and NTGUltilityFunctions.m is are in the same
directory as that from which this notebook was loaded. Then execute the cell immediately below by
mousing left on the cell bar to the right of that cell and then typing “shift” + “enter”’. Respond “Yes” in
response to the query to evaluate initialization cells.

SetDirectory[NotebookDirectory[]];

(» set directory where source files are located x)
SetOptions [EvaluationNotebook[], (* load the StyleSheet =x)
StyleDefinitions - Get["NTGStylesheet2.nb"]];

Get ["NTGUtilityFunctions.m"]; (* Load utilities package x)

Purpose

Some recent issues involving option trading got me interested in Poisson processes and problems. To
gain perspective and become more familiar with the topic | worked through some basic derivations for
Poisson processes and solve some problems | found on the web.

Basics

° Visualization of Poisson process

° Derivation of Poisson Process from recursive differential equations

. Derivation of Poisson Process from Bernoulli Trials with a low probability of success

° Derivation of Poisson Process from fact that interarrival times are exponentially distributed
Problems

1 Waiting for the doctor

2 Covariance, correlation

3 Conditional Poisson distribution

4 Thinning of Poisson process

5 Memoryless property of exponential distribution
6 Distribution of min[X, Y], max[X, Y] for exponential distribution
7 Fire Brigade

8 Conditional Poisson arrivals

9 Total waiting time

10 Poisson shocks

11 Hen crossing road

12 Waiting for a reward

copyright © N T Gladd 2016



2 | Poisson process problems 07-12-17.nb

13 Trucks and cars

14 Light bulb failures

15 Three actors

16 Used car

17 Comparing two Poisson processes

18 Arriving students

19 Distribution of relative arrivals of two Poisson processes
20 Probability of reaching a point in space

21 London Bombs

22 Store Credit (compound Poisson process)
23 Poisson and the Law

Basics: Visualization and three different derivations of

Poisson processes

Poisson processes are widely used as stochastic models for random arrivals. They have been exten-

sively studied and a wealth of material related to them is readily available on the web. | will not attempt
to provide a comprehensive or even a systematic presentation of the topic but focus here on calcula-

tions, making use of Mathematica capabilities whenever convenient (see Mathematica documentation
for PoissonProcess and PoissonDistribution).

Visualization of Poisson process

To set the stage, suppose that emails arrive in your in-box at a rate of approximately one per hour. A
quick simulation shows what the record of one week’s arrivals during a 9 hour work day might look like.

nEmails

L A
2 4 6 8

One day you arrive at the office just after lunch (5 hours after start of work). What is the distribution of
emails you would expect and the probability that 8 or more emails are waiting for you?
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Module[{A = 1, tMax = 8, nSamples = 4000, tSlice = 5, P, path, sliceData, lab, g},

# = PoissonProcess[A];

path = RandomFunction[P, {©, tMax}, nSamples];

sliceData = path["SliceData", tSlice];

lab = stleStringForm["P (A = ~°) slice distribution at t = ~“\nP[n >= 9] = ",
A, tSlice, NF2@N@Probability[n > 8, n ~ P[tSlice]]];

g[1] = Histogram[sliceData, {-1/2, Max[sliceData], 1}, "PDF",
PlotLabel - lab, AxeslLabel - {Stl["nEmails"], Stl[“PDF“]}];

g[2] = Plot[Evaluate@PDF[P[tSlice], x], {Xx, Min[sliceData], Max[sliceData]},
PlotRange -» All, PlotStyle - Black];

Show[{g[1], g[2]}]]

P(A = 1) slice distribution att=5

P[n >= 9] = 0.13
PDF

5 B
0.15 f 7[ x
0.10 *
0.05 }
6 é “1 é é 1‘0 12 1‘4 nEmails

Derivations of Poisson Processes

| Derivation of Poisson Process from recursive differential equations

A key assumption of the Poisson Process is that the probabiity of an arrival event is linearly proportional
to the elapsed time since the last event

P(N(At) =1) = At A + O(At)

The second term represents the probability that two or more events arrived during the interval At. For a
standard Poisson process, that probability is assumed to be negligibly small.

To derive differential equations for the probabilities of Poisson events, | start with the probability that no
events occur during an interval At.

PIN(t + At) = 0] = PIN(f) = 0 0 N(t + At) - N(t) = 0]

= P[N(f) = O]P[N(t + At) - N(f) = 0]

=P[N(f) = 0] P[N(At) = 0] (1)
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=P[N(f) = 0] (1 - PN(At) = 0])

= Po(t) (1 — AAt + O(AL))

where the short hand notation Py(t) = P[N(t) = 0] has been introduced. The first and last expressions

can be rearranged

Po(t + At) = Po(t) (1 — AAt + O(AY))

implies

?Dorzt + At) - Po () . @)
At

where the term associated with two or more events is neglected. In the limit At > 0

Po(t + At) = Po(t) (1 — AAt + O(At))

implies 3)
_ Po(t + At) - Po (D) dPo

lim = = -A

At>0 At dt

The initial condition for this differential equation is that the probability of no events at time t = 0 is 1.
That is Py(0) = 0.
By analogous logic and reasoning an equation can be derived for the probability of n events.
PIN(t + At) = n] =
PIN(t) = O]P[N(t + At) - N(t) = 0] +
PIN(f) = 11PIN(t + At) — N(t) = 1] +P[N(t) = 2]P[N(t + At) - N(f) < 2]

= Pu(t) (1 — AAL + O(AL) + P () (AAL) + Pr_a(f) O(Al)

dPn(t)
dt
| use Mathematica to solve these odes.

= —AP,(t) + APns(t)

wl[1] = DSolve[{D[Po[t], t] == -APe[t], Po[0] = 1}, Po[t], t][1, 1]

Po[t] » e t4

wl[2] =
Dsolve[{D[Pn[t], t] == -APn[t] + APy1[t], Pn[@O] = O}, P[t], tI1[1, 1] /. K[1] - u

Palt] = _et2

t
fe“/\@,m[u] du —J e"* X P_1.n[u] du
1 1
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wi[3] = wi[2] /. n > 1 /. (wl[1l] /. t > u) // Simplify

P [t] > ettt

wi[4] = wl[2] /. n > 2 /. (wl[3] /. t - u) // Simplify

1
Pylt] > —e TP
2

wi[5] = wil[2] /. n > 3 /. (wl[4] /. t > u) // Simplify

1
P3t] > —e T3N3
6

The pattern is clear

e QD"

n!

P, =€

This probabiity distribution is built-in to Mathematica

{PDF [PoissonProcess[A ] [t], n], PDF[PoissonDistribution[At], n]}

n!

> n!
0 True

0 True

2 Derivation of Poisson Process from Bernoulli Trials with a low probability of success

If successful Bernoulli events are counted are interpreted as arrival events, then the distribution of such
Bernoulli arrivals approximate Poisson arrivals in the case that an individual Bernoulli success has low
probability. A simulation illustrates this idea
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Module[{n = 100, A = 5, t = 160, p, B, P, paths, cpaths, ppath, lab},
p =A/n;
B8 = BernoulliProcess|[p];
# = PoissonProcess|[p];
paths = RandomFunction[3, {0, t}] ["Paths"];
(* accumulate the successful Bernoulli events as arrivals x)
cpaths = FoldList[Plus, @, paths [1] [All, 2]]1[2 ;; -11;
cpath8 = Transpose[{paths[1] [All, 1], cpathB}];

ppath = RandomFunction[P, {0, t}]["Paths"][1] ;

lab = stleStringForm]
"Bernoulli events (p = A/n) Poisson events (intensity = A/n)\nA = ~°, n = R
A, nl;

ListPlot [ {cpathB, ppath}, PlotStyle - {Black, Red}, Filling - Axis,

AxesLabel - {St1["t"], St1["~N:"]1}, PlotLabel - 1lab]]

Bernoulli events (p = A/n) Poisson events (intensity = A/n)

A=5,n=100

N
5[ . .
al
3L 0099000000000000000000 W
2k ” n
!

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

20 40 60 80 100

The similarly of the number of events becomes clear when the distributions are compared.

copyright © N T Gladd 2016



Poisson process problems 07-12-17.nb | 7

Module[{n = 100, A = 5, t = 100, nSamples = 1000, p, B, H, events, lab},

p =A/n;

B8 = BernoulliProcess|[p];

(* Simulate some Bernoulli events =x)

events = Table[Total@RandomFunction[3, {0, t}] ["Paths"][1][All, 2] , {nSamples}];
H = HistogramDistribution[events];

lab = StleStringForm|

"Bernoulli dist (Black) vs Poisson dist (Blue)\nP[Bernoulli event] = ", pl;

DiscretePlot[{PDF[# , k], PDF[PoissonProcess[p][t], k]1}, {k, @, 15},

PlotStyle -» {Black, Blue}, PlotLabel - 1lab]]

Bernoulli dist (Black) vs Poisson dist (Blue)

1
P[Bernoulli event] = —
20

020 o
' [ ]
[ ]
045 i
[ ]
[ ]
010k ?
[ )
° [ )
0.05} 1
° [ ]
[ ] [ ]
! $
1 1 1 1 P B ) 'Y PY °
2 4 6 8 10 12 14

The Poisson distribution can be derived from the sum of Bernoulli events. By simple counting argu-
ments, the distribution of Bernoulli event is binomial.

w2[1] = Binomial[n, k] (A6)% (1 - x5)""*

(620 (1-62) “"Binomial[n, k]

Consider an interval of time 1 and subdivide it in n intervals of size 6 = 7/n

w2[2] = w2[1] /. 6 > 1/n

Ak A\ —k+n
(7] (1—*) Binomial [n, k]

The idea is to let n - « subject to the constraint A 7= n p. Introduce the explicit form for Binomial

n!

w2[3] = w2[2] /. Binomial[n, k] » ——
kt (n-k)!
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Rewrite this as

Ay k 1)k
w2[4] = w2[3] /. (—] - Ak[—]

(l)kzk (1-1)'k+"n1
n

n

ki (-k+n):!
Note
n!
=nm-1) ..(n — (k+1)) k terms
(n—k)!
and so

= both numerator and denominator have & terms
(n—k)! nnn..

(1]" n! nn=1) ..(n — (k+1))

n

or, letting Mathematica do the work

. 1\k n
w2[5] = L1m1t[(—) (—, n - o]

n
1
Also note
A\ -k+n
w2[6] = Limit[(l——) » N> o
n
e—}

Thus, in the limit n = o

A\ -k+n
w2[7] = w2[4] /. (1——) - Exp[-A] /. nt > (n-k)!n* // PowerExpand
n
ef)\ )kk
k!

which should be compared with

PDF [PoissonDistribution[A], k]

k!

{M k>0
0 True

copyright © N T Gladd 2016



Poisson process problems 07-12-17.nb | 9

3 Derivation of Poisson Process from fact that interarrival times are exponentially distributed

As time increases, Poisson arrival events occur as illustrated here.

nArrivals Relation between arrival counts and arrival times
Ab — e
| | |
| | |
| | |
| | |
3p---- \””””””””’T”’l ***************************
| | |
T T2 Ts T4
| | |
2k ———— e e e _l ,,,,,,,,,,,, Jococcoccocococococococococococococooococoooo
| | |
| | |
| | |
| | |
1h--- Bl e e
| | |
| | |
| | |
O 1 1 1 1 1 1
2 4 6

There are useful logical relationships between the arrival times and increases in event counts

Event(T; > t) <= Event(N(7) =0)

So we know

P[T; > ] = P[N; = 0] = ¢

where, from the previous section, | have used the expression e~*! for the explicit probability that no
event has occurred.

Similarly, consider the second arrival event. The probability that the second arrival event has not
occurred conditional on the first arrival event occurring at T4 = u

P[T2 > ¢| Ty = u] = [P[no events betweenu and u + t| T1 = u]

But, events in the interval {u, u+t} are not influenced by events in the interval {0, u}, so

P[T,>t| Ty = u] = P[no events betweenuandu + t| Ty =u] = P[N(®)=0] = &'

This argument can be extended to conclude that all interarrival times are distributed like e™*. Introduc-
ing W, to be the time waited for the n" arrival to occur. This is just the sum of the interarrival times

Wo=T1 +T, + ...+ T,

Notice how this sum is distributed

With[{& = ExponentialDistribution[A]},
{Probability[T1 > t, T1 ~ &, Assumptions -» {t > 0}],
Probability[T1 + T2 > t, {T1 ~ &, T2 ~ &}, Assumptions -» {t > 0}],
Probability[T1 + T2 +T3 > t, {Tl1 ~ &, T2 ~ &, T3 ~ &}, Assumptions -» {t > 0}]}]

{e®, e (1+t ), 1ce*“ (2+2tx+t22%)}
2
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In general
n—1 (/1 t)k
P[W, > f] ~e Z
k=1 k!

Note that this probability is equivalent to the probability of the n'" increase in the count having not
occurred

P[W, > f] = PIN@® < n] = CDFIN®)]

The rhs is the CDF of the random variable N(t). This sum involves the Gamma function

?? Gamma

Gammalz] is the Euler gamma function I(z).
Gammalg, z] is the incomplete gamma function (g, z).

Gammala, zo, z1] is the generalized incomplete gamma function I(a, zp) - M@, z1). >

Attributes[Gamma] = {Listable, NumericFunction, Protected, ReadPr‘otected}

(rt)"

w3[1] = Sum[Exp[-2t] k—, {k, @, n-1}]

Gamma[n, t A]

Gamma [n]

We can differentiate to calculate the PDF

w3[2] = -D[w3[1] /. tA > u, u] /. u->t2x

et (t A) ~1n

Gamma[n]

Simplifying

w3[3] = w3[2] /. Gamma[n] - (n-1)!

et (t A) ~1n

(—1+n) !

Independently of this calculation, the Poisson PDF for P[N(t) <n] is

w3[4] = Refine[PDF [PoissonProcess[A][t], n-1], n-1 > O]

et ()

(—1+n) !

which is the same as w3[3]
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w3[3] - w3[4] // Simplify

0

and the Poisson process PDF has been derived starting with the fact that interarrival times are exponen-
tially distributed.

Problems involving Poisson processes

| found a nice collection of problems on the web and work through the details of the solution procedures.

PPA solved problems in random processes - Valjhun@
valjhun.fmf.uni-lj.si/~raicm/Vaje/SPI/SPI_ex.pdf ¥

by M Raic - 2015 - Related articles

M. RAIC & A. TOMAN: SOLVED PROBLEMS IN RANDOM PROCESSES. 4

AAAAA A homogeneous Poisson
process with intensity A > 0 can be defined as a certain ...

| Waiting for the doctor

Raic, Toman: Homogeneous Poisson Process - 1

1. Patients arrive in a surgery according to a homogeneous Poisson process with inten-
sity 6 patients an hour. The doctor starts to examine the patients only when the
third patient arrives.

a) Compute the expected time from the opening of the surgery until the first
patient starts to be examined.

b) Compute the probability that in the first opening hour, the doctor does not
start examining at all.

a) This can be immediately solved using Mathematica probability capabilities

The expected arrival time of the 3rd patient is

Module[{&, result},
& = ExponentialDistribution[A];

result = Expectation[Tl + T2 + T3, (Tl ~ &, T2 ~ &, T3 ~ &}];
{result, result /. X > 6}]

1
)E}

{

> lw

Alternatively, the sum of exponential random variables is distributed according to an Erlang distribution.
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Module[{& = ErlangDistribution[k, 1], results},
results =

PrependTo[results, {"PDF", "CDF", "mean", "variance"}];
LGrid[results, "Properties of Erlang distribution"]]

Properties of Erlang distribution

PDF CDF mean | variance
et g Regularized[k, 0, tA] | & 5
Gammalk] ammaRegularized[k, 0, t A] A 0

{{Refine[PDF[&, t], t > O], Refine[CDF[&, t], t > @], Mean[&], Variance[&]}};

distribution of arrival time of k = 3rd patient (A = 6/hour)

PDF[T3]
b |
|
[ |
15F I
L l
r )
L |
|
[ |
1.0 I
|
[ |
r |
L |
r 1
0.5+ E[T3] = —
+ 2
]
|
|
|
L 1 L L L L 1 L L L n T . T3
0.5 1.0 1.5 2.0

b) Probability that less than three patients arrive during the first hour

distribution of arrivals

25
P[k < 3] = — = 0.062
eG

or that the third arrival time occurs after one hour
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distribution of 3rd arrival time

25
P[T > 1] = — = 0.062
es
PDF

0.5

05 1.0 15 20

2 Covariance, correlation

Raic Homogeneous Poisson Process - 2

2. Consider a homogeneous Poisson process with intensity A.

a) Compute the auto-covariance function of the family N, i. e., all covariances

),
cov(Ny, Ny).

b) Compute the auto-correlation function of the family N, i. e., all correlations
cov(Ng, Ny).

c) For t; <ty < --- < 1, find the covariance matrix of the random vector

(Niy, Niy, ... Ny,).

Module[ {P},
# = PoissonProcess[A];
{CovarianceFunction[®P, s, t], CorrelationFunction[®, s, t]}]

}

Min[s, t]

Vst

{AMin(s, t],

Alternatively,

Module[{®, meant},
# = PoissonProcess[A];
Print["mean = ", Mean[P[t]]];
Expectation[ (x[t] - At) (x[s] - As), x & P]]

mean = tA

ConditionalExpression[s A, s < t]
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Module[{A = 1, tMax = 3, G},
G[1] = Plot3D[AMin[s, t], {s, O, tMax}, {t, O, tMax}, Mesh - False,
AxesLabel - {Stl["s"], Stl["t"], ""}, PlotLabel - Stl["Covariance"]];
Min[s, t]
G[2] = P10t3D[A —, {s, 0, tMax}, {t, o, tMax}, Mesh - False,
Vst

AxesLabel -» {Stl["s"], Stl["t"], ""}, PlotLabel - Stl["Correlation"]];
Grid[{{G[1], G[2]}}]]

Covariance

Correlation

3 Conditional Poisson distribution

Raic Homogeneous Poisson Process - 4

4. Let X ~ Pois(\) and Y ~ Pois(u) be independent random variables. Find the
conditional distribution of the random variable X given Z := X + Y.

Note

PIX=k|X + Y =n] =
PIX=kNX+Y=n]

conditional prob definition

PIX + Y = n]
PIX=kNk+Y=n]
= meaning of intersection
PIX + Y = n]
PIX = k]P[Y = n — k]
= X and Y are independent
PIX + Y = n]

Each of these three expressions can be evaluated. The two terms in the numerator are

w3[1] = Refine[Probability[X == k, X ~ PoissonDistribution[Ayx]], k == Floor[k] &k > 0]

“2x 9k
e Ay

k!
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w3[2] = Refine[
Probability[Y == n - k, Y ~ PoissonDistribution[Ay]], k+Floor[-k+n] == n& &k < n]

ef)\v )L\?kH]

(—k+n) !

The term in the denominator can also be calculated because Poisson processes are additive.

w3[3] =
Refine[Probability[Z == n, {Z ~ PoissonDistribution[Ax +Ay]}], n == Floor[n] & n > 9]

e M Oy + Ay) "

n!

Thus

w3[1] w3[2]
w3[3]

w3[4] =

n X" O+ ay) "
ki (-k+n)!

This suggests a binomial distribution. Note

w3[5] = Refine[PDF[BinomialDistribution[n, p], k], @ <k < n]

(1-p) N pk Binomial[n, k]

Using this result

n!

w3[6] = w3[4] /. Sol[Binomial[n, k] = ——————
ki (n- k)t

» nt]

Binomial[n, k] AX AJK™ (Ax +Ay) "

| conclude

Ax
PIX=k| X + ¥ = u] & Binomial[n, ——]
Ax + Ay

To establish that the sum of Poisson stochastic variables is Poisson distributed | can also use

CharacteristicFunction[PoissonDistribution[A], k]

e<71+<eik> A

The sum of Poisson variables X1 + X2 is the product of the characteristic functions
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CharacteristicFunction[PoissonDistribution[Al], k]
CharacteristicFunction[PoissonDistribution[A2], k] // Simplify

e<71+eik> (A1+22)

4 Thinning of Poisson process

Raic Homogeneous Poisson Process - 5

[}

Let N be a random variable denoting the number of arrivals, ditributed by Pois-
son Pois(\). Each arrival is successful with probability p, independently of other
arrivals, as well as of the number of arrivals. Denote by S the number of successful
and by 7' the number of unsuccessful arrivals, that is, 7= N — S.

a) Find the distribution of S and T'.

b) Show that the random variables S and 7" are independent.

c¢) Show that under some other choice of the distribution of N, S and 7" are no
longer necessarily independent.

To gain some perspective, | start with a simulation

Module[{A = 5, nSamples = 100000, p = 1/4, P, path, results, resultsS, resultsT},
# = PoissonDistribution[A];
path = RandomVariate[P, nSamples];
results = ({#, If[RandomReal[] < p, "S", "T"]1}) & /@ path;
resultsS = Select[results, (#[2] = "S") &];
resultsT = Select[results, (#[2] = "T") &];
Histogram[ {resultsS [All, 1], results[All, 1]}, Automatic,
"PDF", ChartLayout - "Stacked", ChartLegends - {"S", "T"} ]]

0.25F

0.20 w 1S

0.15F

These distributions appear similar.
a) The process S is successful with probability S — thus
(4-1) P[S = k| N = n] = (1-p)™*" p¥Binomial[n, K]
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where k < n. The total probability is

(4-2) [P[S:k]:i[P[S:MN:n][P[N:n]
n=k

Since the arrivals are Poisson distributed with intensity A

e—/\ A
(4-3) PIN = n] =
n!
w4[1] = Refine[PDF[BinomialDistribution[n, p], k], @ < k < n]

(1-p) N pk Binomial[n, k]

w4[2] = Refine[PDF[PoissonDistribution[A], n], n > 0]
e M AN
n!
w4[3] = Sum[w4[1] wa[2], {n, k, o}]
e PA pk )kk
k!

Thus, we see

B_“’ (k )k
PIS = k] = ———2—
k!
By analogy
()—/\ (1-p) (l 1- )k
P[T = k] = d-p

k!

b) We need to calculate

P[S N T] = P[S]P[T]
Note

wab[1] = PIntersection[S == j, T = k]

PIntersection(S == j, T == k]

Sincen=j+k

W4b[2] = w4b[1] /. T =k > N == j + k

PIntersection[S == j, N = j + k]
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wab[3] = w4b[2] /. PIntersection[A_, B_] - Pconditional[A, B] P[B]

P[N = j+ k] Pconditional([S = j, N = J + k]

wib[4] = w4b[3] /. Pconditional[S == j, N == j+k] - PDFBin[j+k, p, j] /.
P[N =Jj+k] -» PDFPois[A, j+Kk]

PDFBin[j + k, p, j] PDFPois [, j + k]

wab[5] = w4b[4] /.
PDFBin[j + k, p, j] - Refine[PDF[BinomialDistribution[j +k, p]l, jl, @ <j =< j+k]

(1-p)*pIBinomial[j + k, j] PDFPois 2, j + k]

w4db[6] = w4b[5] /.
PDFPois[A, j + k] - Refine[PDF[PoissonDistribution[A], j + k], j+k > @] // Simplify

e (1- p)k pd A3*k Binomial[j + k, ]
(3+k)!

This can be factored. Letg > 1-p

a!

Binomial[a_, b_.] » ——
bt (a-b)!

w4b[7] = w4b[6] /. 1-p » q /. Exp[-A] -» Exp[-Ap] Exp[-rq] /.
ER

Binomial[a_, b_] » ——
bt (a-b)!

e P A-q A pJ qk Aj+k

jrk!

Note that the independence condition P[S = j] P[T = k]. | calculate

PS = Refine[Probability[S == j, S ~ PoissonDistribution[Ap]], j == Floor[j] & j = 0]

et (pa)J
j!

PT = Refine[Probability[T == k, T ~ PoissonDistribution[Aq]], k == Floor[k] &k > 0]

e 9t (qa)k
k!

The expression w4b[7] is the same as the independence condition
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wab[8] = w4b[7] - PSPT // PowerExpand

0

5 Memoryless property of exponential distribution

Raic Homogeneous Poisson Process - 6

6. Show that the exponential distribution is also memoryless: for T ~ Exp(\) we have
for sufficiently large ¢,s € N:

PT<t+s|T>t)=PT<s). (%)

Moreover, show that the exponential distribution is the only memoryless distribution
which is continuous and with density being continuous on (0, 00) and zero elsewhere.
We assume that the conditional distribution in (%) makes sense, i. e., that P(T" >
t) >0 for all ¢ > 0.

The calculations corresponding to the lhs is

Refine[Probability[T < s +t ) T> t, T ~ ExponentialDistribution[2]],
t>08&&s > 0] // Expand

1_(675)\

and the rhs

Refine [Probability [T < s, T ~ ExponentialDistribution[A]], s > 9]

1_(675)\

The two probabilities are identical. The fact that these probabilities do not depend on the time parame-
ter t means that the exponential process is “memoryless.”

6 Distribution of min[X, Y], max[X, Y] for exponential distribution

Raic, Toman: Homogeneous Poisson Process - 7

7. For independent random variables X ~ Exp(A) and Y ~ Exp(pu), find the distribu-
tion of U := min{X,Y} and V := max{X,Y}.

M cannot calculate this directly.

Probability[Min[X, Y],
{X ~ ExponentialDistribution[A], Y ~ ExponentialDistribution[u]}]

Probability [Min[X, Y],
{X ~ ExponentialDistribution[A], Y ~ ExponentialDistribution[u]}]
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However, the two conditions can be calculated separately

When X <Y

Probability([X < Y,
{X ~ ExponentialDistribution[AX], Y ~ ExponentialDistribution[AY]}]

X
X+ AY

When Y < X

Probability[Y < X,
{X ~ ExponentialDistribution[AX], Y ~ ExponentialDistribution[AY]}]

AY
AX + 2AY

Thus,

min[AX, AY]
AX + AY

P[U] = P[min(X, )] =

The problem asks for the distribution.

For the minimum U = min[X, Y], the CDF is

w6[1] = Probability[X > u & Y > u, {X =~ ExponentialDistribution[AX],
Y ~ ExponentialDistribution[AY]}, Assumptions -» {u = 0}]

eV AX-u AY

The PDF is

w6[2] = -D[#, u] &@w6[1]

7(e—u)\X—u AY <*)(X _ )LY)

w6[2] = -D[w6[1], u] // Simplify

e ! (X + Q)

Clear [PDFU];
PDFU[U_, XX_, AY_] := e ¥ @) (X +2ay)

For the maximum V = max[X, Y]

w6[3] = Probability[X <v & Y < v, {X ~ ExponentialDistribution[AX],
Y ~ ExponentialDistribution[AY]}, Assumptions -» {v > 0}]

(1 _ (erAX> (1 _ (erAY>
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In this case, the PDF is

w6[4] = D[#, v] &@w6[3]

e—v).x (1_e—v)\Y> AX+@7V)\Y (1_e—v)X) 2AY

Clear [PDFV];
PDFV[u_, AX_, AY_] := e™¥™ (1-e™M) MX+e™M (1-e™VM)ay

| verify these derived PDFs against simulation
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Module[{AX = 1, AY = 2, nSamples = 10000, &X, &Y, pairsXY, U, V, lab, g},

{EX, &Y} = {ExponentialDistribution[AX], ExponentialDistribution[AY]};

pairsXY = Transpose[{RandomVariate[&X, nSamples], RandomVariate[&Y, nSamples]}];

U = Min[#] & /@ pairsXY;

V = Max[#] & /@ pairsXY;

lab = StleStringForm["Comparison PDF[Min[X, Y]] with simulation"];

g[1] = Histogram[U, {0.05}, "PDF", AxesLabel - {Stl["u"], St1["PDF[U]"]},
PlotLabel -» lab, ImageSize - {500, 200}];

g[2] = Plot[PDFU[u, AX, AY], {u, @, Max[U]}, PlotStyle - Black, PlotRange - All];

lab = StleStringForm["Comparison PDF[Max[X, Y]] with simulation"];

g[3] = Histogram[V, {0.05}, "PDF", AxesLabel - {Stl["v"], St1["PDF[V]"]},
PlotLabel - lab, ImageSize - {500, 200}];

g[4] = Plot[PDFV[v, XX, AY], {v, @, Max[V]}, PlotStyle - Black];

Grid[{{Show[{g[1], g[2]1}1}, {Show[{g[3], g[41}1}}1]

Comparison PDF[Min[X, Y]] with simulation
PDF[U]

oy

i\

0.5

0.0 u

0.2 0.4 0.6 0.8 1.0 12 14
Comparison PDF[Max[X, Y]] with simulation

PDF[V]

7 Fire Brigade

Raic, Toman: Homogeneous Poisson Process - 8
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8. A fire station receives emergency calls according to a homogeneous Poisson process
with intensity half a call per hour. Each time, the fire brigade needs certain time
to process the call and prepare for further calls (this total period will be called
intervention). During an intervention, the calls are redirected to other fire stations.
Suppose that the intervention times are distributed uniformly over the interval from
half an hour to one hour and independent of each other as well as of the emergency
calls.

Suppose that the fire brigade is able to respond to the calls at the moment (i. e.,
there is no intervention). Find the distribution of the number of the calls to which
the fire brigade responds before any call is redirected.

The first call can be taken, then an intervention period begins. At first cut | consider the intervention time
AT to be constant. So, for the second call to not be diverted, it must be arrive at least AT after the first
call. Interarrival times are distributed exponentially with parameter A. The probability p that a call will be
diverted is

pCallDiverted =
Probability [T < AT, T ~ ExponentialDistribution[A], Assumptions - {AT > 0}]

1- efﬂT)L

A sequence of calls arrive each of which is diverted with probability p. Such sequences of Bernoulli
trials are modeled by a Geometric distribution — defined as the distribution of the number of failures in
a sequence of Bernoulli trials before a success with probability p occurs.

In this context, failure corresponds to accepting a call, while diverting a call corresponds to success. For
constant AT.

Module[{G},
G = GeometricDistribution[p];
Refine[PDF[g, k], k = 0]]

(1-p)“p

In the stated problem, AT is not constant but uniformly distributed between 1/2 and 1 hour. In this case,
the probability P[T < AT] in that case.

Probability[T < AT,
{T ~ ExponentialDistribution[A], AT ~ UniformDistribution[{1/2, 1}]}]

2er-2e M2y

A

For the stated arrival rate of calls A = 1/2
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2er-2e M2y x
/e x>1/2//N
A

p = 0.31092

and the distribution of calls accepted before a diversion is

2e?-2e M2+

A

(1—p)kp /. p >

(2 er_2e M2y A) (1 _ 2e’)~72;:"/'2+1 k

A

Clear [TheoreticalDistributionOfCallsAccepted];
TheoreticalDistributionOfCallsAccepted[A_, kMax_] :=
Module[{p, vals},

2er-2eM24 2
P = // Nj;
A
vals = Table[(l-—p)kp, {k, @, kMax}];

Transpose[ {Range[1, kMax + 1], vals}]]

Module[{A = @.5, kMax = 1@, dat, info},
dat = TheoreticalDistributionOfCallsAccepted[A, kMax];
info = ({#[1], NF3e#[2]}) & /e dat;
PrependTo[info, {"nCalls accepted before diversion"”, "P[nCalls accepted]"}];
LGrid[info, "test"]]

test

nCalls accepted before diversion | P[nCalls accepted]
0.311
0.214
0.148
0.102
0.070
0.048
0.033
0.023
0.016
0.011
0.008

©| oo N| o] | B W] V| =

=]
=] o

Checking against simulation
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Module[{x = 1/2, a = 1/2, B = 1, nTrials = 20,
nSamples = 1000, kMax = 10, analyticalResults, &, «, Tvals,
ATvals, resultsSim, resultTrial, estimates, MCEstimate},
analyticalResults = Theoretica1DistributionOfCallsAccepted[1//2, kMax];

& = ExponentialDistribution[A];
U = UniformDistribution[{a, B}1];
resultsSim = Table|
(* Crude - I just make sure nTrials is large enough for a diversion to occur x)
Tvals = RandomVariate[&, nTrials];
ATvals = RandomVariate[%/, nTrials];
resultTrial =
(Boole[#[1] < #[2]]) & /@ Transpose[{Tvals, ATvals}], {nSamples}];

MCEstimate[pos_] :=
Module[{d}, d = Boole[FirstPosition[#, 1][[1] == pos] & /@ resultsSim;
{pos, Mean[d], StandardDeviation[d]//WJLength[d] } // N];
estimates = (MCEstimate[#]) & /@ Range[1, kMax + 1];
Module[ {Bar, lab},
lab =
StlestringForm["Probability nCalls accepted before diversion X = "~ \nred bars
represent 2sd confidence band - nSamples = ~~", NF2ZeNeA, nSamples];
Bar[{x_, y_, dy_}] := {Red, Thick, Line[{{x, y - 2dy}, {X, y + 2dy}}]};
ListPlot[analyticalResults, Prolog - Bar /@ estimates, PlotStyle - Black,
AxesLabel - {Stl["nCalls"], Stl["P[accepted]"]}, PlotLabel - lab]]]

Probability nCalls accepted before diversion A = 0.50
red bars represent 2sd confidence band - nSamples = 1000

P[accepted]
0.30F }
0.25F

0.20F |

015§ |
0105 *
!

\“‘\“‘\“‘\“""nca"s

8 Conditional Poisson arrivals

Raic, Toman: Homogeneous Poisson Process - 9
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9. Consider a homogeneous Poisson process with intensity A.

a) Suppose that up to time ¢, exactly one arrival occured. Given this information,
find the conditional distribution of the arrival time.

b) Suppose that exactly two arrivals occured. Compute the conditional expecta-
tions of both arrival times.

a) Fors <t, whatis P[S< s|N(t)=1]?

PS<s|N@®=1] =P[N¢s) = s N N =1]

This probability involves a time related event and a counting related event. To make progress, one must
reexpress the time event as a counting event. For the first arrival event occurring at time T.

P[T < 1] = P[NIA] = 1]

Using this result

PIS<s|N®=1] = P[N(s) = s | N@®) =1]

and then

PIS< s|[N@®=1] = PIN(s) = s | N@® =1]
=PING) = 1 | N@®=1]

The last statement is a bit mysterious. Since we know that N[s] = 1 means a counting event has
occurred and we are given that that event occurred at t = 1, then the event N(s) = s is equivalent to the
event N[s] = 1.

Proceeding

PING) =1 N N@ =1]

PIS<s|N@®=1]1=P[NG) = s | NO=1] =P[NG) = 1 | No=1] =
PIN®) = 1]

_PING() =1 N N@® - N(s) = 0]
B PING = 1]

This last step is often used in this type of calculation. It allows the independence of time intervals for
Poisson processes to be evoked

PING) =1 N N@ = 1]
PIS<s|N®=1] = P[N(s) = s | NO)=1] = P[N(s) = 1 | N@®O=1] =

PING) = 1]
_PING) = 1 N N@ = N(s) = 0]
- PING) = 1]
_ PING) = 1IPN(®) = N(s) = 0]
- PING) = 1]

Note
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{Probability[x[t] == 1, x ~ PoissonProcess[A]],
Probability[x[t - s] == @, X ~ PoissonProcess[A]]}

{eft)\ t A, e(st )\}

Using these probabilities

PING) =1 N N@ =1]

PIS< s|N®=11 =P[N(s) = s | NO=1] =P[N(s) = 1 | N®=1] =

PIN® = 1]
_PING) =1 N N® = N(s) = 0]
B PING) = 1]
_ PIN(s) = 1]PN(@) — N(s) = 0]
- PING) = 1]
_ (e—slts/\) (e—(t—s))l) _ i
T ()t

b) There are two events S and S,. What are P[S1< s|N(t)=2] and P[S2< s|N(t)=2]?

The calculation of the second term is analogous to the calculation in part a)

PINGs) = 2 N N =2 PIN(s) = 2]PIN@® — N(s) = 0
PIS; < s| N =2] = [N(s) N N@®=2] _ [N(@s) = 2] PIN®) (s) = 0]
PIN(@® = 2] PIN@®) = 2]

{Probability[x[t] = 2, X ~ PoissonProcess[A]],
Probability[x[t - s] == @, X ~ PoissonProcess[A]]}

{l e*t)k t2 )LZ, e(Sft) )\}
2

PLS; < s|N(®=2] =
P[NGs) = 2 N N@® =2 PIN(s) = 2]PIN@® — N(Gs) = 0
PING) > 2| N = 2] = [N(s) N N@®»=2] _ NG 1P[N() () ]
PIN® = 2] PING® = 2]

(i e—SI\ 52 AZ) (e(s—t) /\) 2

)
(Lerrrn) 2

On the other hand, the first term has two parts that must be calculated.
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PIN(G) = 1NOAN@O =2]
PIN® = 2]
= (P[N(s) = 1]P[N(®) — N(s) =1] + P[N(s) = 2] PIN(@®) — N(s) =0D/P[N® = 2]
(e‘” s /\) (e(s") A - s)) .\ (i eshs? /\2) (e(s““)

PISi < s|N@®=2] = PIN(s)= 1 |[N(®=2] =

(L e\ 2 /\2) (1_ e 2 ]LZ)
2 2

sit—s) §*
= + —

I I

s 52
=2— - —

t 2

Module[{t = 1},
2st - s?

- }» {s, @, t}, AxesLabel - {Stl["s"], St1["CDF"]},
t

2
Plot[{i—z,

CDF

1.0

o.s} — P[S,<s|N(t) = 2]
— P[S1ss|N(t) = 2]

— .y g
0.2 0.4 0.6 0.8 1.0

PlotStyle -» {Blue, Red}, PlotLegends - {"P[S,s<s|N(t) = 2]", "P[S;sS|N(t) = 2]"}]]

Check these results against simulation
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Module[{A = 2, t = 1, nSamples = 1000, P, results,
resultsConditional, Silvals, S2vals, arrivalTimes, #, lab},

P = PoissonProcess[A];

results = RandomFunction[P, {0, t}, nSamples];

(» Select those results that are conditional on Ny = 2 %)
resultsConditional = Select[results["Paths"], (#[-1, 2] = 2)&];
(x list of first arrival times x)

Sivals = (#[2]) & /e resultsConditional;

Slvals = Silvals [All, 1] ;

(*» list of second arrival times x)

S2vals = (n[[3]]) & /@ resultsConditional;

S2vals = S2vals [All, 17 ;

H[1] EmpiricalDistribution[S1lvals];

H[2] = EmpiricalDistribution[S2vals];

lab = Sstl["arrival times in (@,t) conditional on N = 2\n

CDF[S; < s | Nt = 2] Red, CDF[S, < s|N¢ = 2] Blue"];
DiscretePlot[{CDF[#[1], s], CDF[#[2], s1}, {s, O, t, @.01},
PlotStyle - {Red, Blue}, AxesLabel - {Stl["s"], St1["CDF"]}, PlotLabel - lab]]

arrival times in (0,t) conditional on N; =2

CDF[Ss < s| Ni = 2] Red, CDF[S; < s|N;=2] Blue
CDF

10 [ .

0.6

04

o2 iR

9 Total waiting time

Raic, Toman: Homogeneous Poisson Process - 10

10. Passengers arrive at a railway station according to a homogeneous Poisson process
with intensity A. At the beginning (time 0), there are no passengers at the station.
The train departs at time ¢. Denote by W be the total waiting time of all passengers
arrived up to the departure of the train. Compute E(W).

The expected time for passenger to arrive is
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Tarrival == Expectation[x[s], X ~ PoissonProcess[A]]

Tar‘r‘ival =S A

The waiting time is

W = fTarrival(s) ds
0

So

W = Integr‘ate[)ts, {S_' 0_, t}]

t2 2
W= ——
2

|10 Poisson shocks

Raic, Toman: Homogeneous Poisson Process - 11

11. Poisson shocks. Each arrival in a homogeneous Poisson process with intensity A
causes a shock. Its effect s time units later equals e . Denote by X (t) the total
effect of all the shocks from the interval [0,¢] at time ¢. Compute the expectation

E[X(t)].

This is similar to the previous problem. The expected arrival time is

Tarrival == Expectation[x[s], x ~ PoissonProcess[A]]

Tar‘r‘ival =S A

In this case we want the cumulative shock at time t.

shock = f EXpl—=0(t — Tarrivar())] d's
0

or

shock == Integrate[Exp[-© (t -1s)], {s, @, t}] // Simplify

71+et6)‘>

efts (

shock ==

O A

| confirm with a simulation. | use the following function to generate arrival times.
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(* Simulation of Poisson arrival times x)
Clear[SimulateArrivalTimes];
SimulateArrivalTimes[A_, tMax_, nSamples_] :=
Module[ {result},
result = RandomFunction[PoissonProcess[A], {©, tMax}, nSamples] ["Paths"];
result = #[2 ;; -2, 1] & /@ result]

For example,

Module[{A = 1, tMax = 10, nSamples =1},
SimulateArrivalTimes[A, tMax, nSamples]]

({4.84707, 7.08518, 9.32553, 9.39195, 9.88382, 9.94405} }

Note: | could also have simulated the arrival times as the sum of exponential random variables

Module[{A = 1, tMax = 10, nSamples = 10, variates, arrivalTimes},
variates = RandomVariate[ExponentialDistribution[A], nSamples];
arrivalTimes = FoldList[Plus, ©, variates][2 ;; -1]]

{1.10836, 2.96512, 3.3785, 6.0416, 7.48959, 7.60273, 8.00323, 11.0246, 11.1447, 11.7115}

| compare theory and simulation for nominal parameter values.

Module[{A = 1 (% per hour %), tMax = 12 (x hours ), nSamples = 1000, 6 = 1/1e,
times, shockEffects, cumulativeShockEffects, theory, info, lab, ShockEffect},

ShockEffect[startTimes_] := Exp[-6 (tMax - #)] & /@ startTimes;

times = SimulateArrivalTimes[A, tMax, nSamples];

shockEffects = ShockEffect /@ times;

cumulativeShockEffects = Total /@ shockEffects;
e-tMaxe (_1 + etMaxe)L)
theory =

.
3

6A
info = {{Netheory, Mean[cumulativeShockEffects],

StandardDeviation[cumulativeShockEffects]//W/nSamples }};
PrependTo[info, {"theory", "mean", "sim error"}];

lab =
StringForm["expected total effect of simulated shocks\ni = °° tMax = °~ @ = °~
nSamples = ~°", A, tMax, &, nSamples];
LGrid[
info,
lab] ]

expected total effect of simulated shocks
A=1tMax=12 0= 11—0 nSamples = 1000

theory | mean | sim error
6.98806 | 6.96522 | 0.0691489
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Il Hen crossing road

Raic, Toman: Homogeneous Poisson Process - 12

12. A hen wants to cross a one-way road, where cars drive according to a homogeneous
Poisson process with intensity A cars a time unit, all with the same speed. It takes
¢ time units for the hen to cross the road. Assume that the hen starts to cross the
road immediately when there is a chance to do it without being run over by a car.
Compute the expected total waiting and crossing time for the hen.

The description of how the process starts seems ambiguous. | interpret it as follows.

. The chicken arrives at the edge of the roads and observes a car coming. The time it takes the
car to reach the point where the chicken wants to cross is T;.

° If T4 > T, the chicken crosses immediately so the waiting time for this case is Tyait = T¢

° If T4 < T, the chick waits for the first car to pass, then crosses when possible.

Another way of interpreting this problem is that the distribution of cars along the road is determined by a
Poisson process. The chicken, however, can only see the next car and make his decision to cross
based on its time to arrival at his location.

Solution method based on counting

The probability that the chicken can cross is easily calculated

wl2A[1] = pCrossSafely ==
Refine[Probability[T1 > TC, Tl ~ ExponentialDistribution[A]], TC 2= @]

pCrossSafely == e ¢4

and, if it is save to cross, the crossing time is just T¢

In general, the chicken may have to wait for several cars to pass before it is safe to cross. Assume that
it is the appearance of the A" car that allows the chicken to cross. Thus, the waiting time is

Twait=Tl+T2 + .. + TN—] + Tc

where the T4, etc are random times and N is also a random variable. The expected time of crossing in
this set up is

ElTwait | N = 0] = E[Ty | Ty < Tl + v + E[Tyey | Tyor < Tl + T,
= (N-DET;|Ti< 1] + T.

Now, N is a random variable distributed geometrically

ENE[Twaie | N = n]] =
E[Twait]l = ExION = 1)] [E[TilTiS T] + T.

The individual waiting times are
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W12A[2] = E["T;|TisT"] =
Refine [Expectation[TI p TI < TC, TI ~ ExponentialDistribution[A]], TC > 0]

~1+e™r-TCA

E[T;|Ti<Tc] =
(-1+e%) 2

Since the geometric distribution is the number of failures before success with probability pCrossSafely

W12A[3] =
EN["N = n-1"] == Expectation[N = n, N ~ GeometricDistribution[pCrossSafely]]

1 - pCrossSafely

EN[N = n-1] =
pCrossSafely

Calculating the waiting time

W12A[4] = EN["N = n-1"]E["T;|T;<T"] + TC /. (wl2A[2] // ER) /. (w1l2A[3] // ER)

Tc (1- pCrossSafely) (-1+e™*-TC2)
.

(-1+e™*) pCrosssafely X

W12A[5] = Twait = wl2A[4] /. (wl2A[1] // ER) // Simplify

1+ eTC)\

A

Twait ==

Solution method based on renewal

After the first car passes, the chicken is faced with exactly the same situation.

IE[Twaitl Tl] = Tc]l{Tl = Tc} + (Tl + IE[Twait])l{Tl < Tc}

Take the expectation with respect T,

Er, [E[Twaic | T1]l = Eq, [T 1{Ty = T} + Eq,[(Th + E[Twaie) 1{T1 < Tc}]
E[Twaiel = T Eq,[1{T1 = T3] + Eq[T1 M{T1 < Tc}] + Eq[E[Tywaiel 1{T1 < T}]

IE[Twait] = Tc[P[TlZ Tc] + IETllTlll{Tl< Tc}] + IE[Twait] IP[ T1< Tc]

Note P[T1 2 T;] and P[ T1 < T¢] are given by

{Refine[Probability[T1 > TC, T1 ~ ExponentialDistribution[A]], TC = @],
Refine[Probability[T1l < TC, Tl ~ ExponentialDistribution[A]], TC = 0]}

{e’T”, 1- e’T”}

Also
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Refine [Expectation[T1Boole[T1l < TC], Tl ~ ExponentialDistribution[A]], TC > @] //
Simplify

e T (-1+e™*-TC )

A

e (-1+e™*-TCA)

wi2B[1l] = E[Twait] = TCe T°* 4+ + E[Twait] (1-e7™%)

A

e TcA (-1+<eTU-Tcx)

E[Twait] = e "4 TC + +(1-e ) E[Twait]

A

wl2B[2] = Solve[wl2B[1], E[Twait]][1, 1]

_1+eTC)\

A

E[Twait] -

which is the same result as obtained with the counting method.

|2 Waiting for a reward

Raic, Toman : Homogeneous Poisson Process - 13

13. In a certain place at a fair, prizes are shared every now and then. Everyone being in
that place when the prizes are being shared gets a prize. The sharing times form a
homogeneous Poisson process with intensity A. At time zero, Tony observes that a
sharing is in progress. He rushes towards the sharing place, but is too late. Then he
waits for the next sharing, but at most for time d: after that time, he gets bored and
moves eslewhere. As soon as another sharing starts, he rushes towards the place,
but is again too late and starts waiting for the next sharing, again at most for time
4. So he repeats until ge gets the prize. Denote by 7" the time when Tony eventually
gets his prize. Compute E(7’), assuming that the fair is open infinitely long.

This is actually just a restatement of the chicken crossing the road problem.

The probability a prize is won on any given drawing is p = P[T < ¢].

Refine[Probability [T < &, T ~ ExponentialDistribution[A]], & = 9]

1_(675)\

Suppose the drawing is won on the n" attempt. Then

E[T |N =n] = (n — DE[AT |AT = 6] + E[AT |AT < §]

We have
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Refine[Expectation[T ) T > 6§, T ~ ExponentialDistribution[A]], 6 > @] // Expand

1
5+ —
A

Also,

Refine [Expectation[T ) T < &, T ~ ExponentialDistribution[A]], & > @] // Simplify
1-e®*+62
A-e®t

Take the expectation with respect to N/

EN[E[T | N = n]] = Ex[(n — D]E[AT1{AT = 6}] + E[ATL{AT < 6}]

E[T] = Enl(n — D]IE[ATI{AT = 6}] + E[ATI1{AT < 6}]

Expectation[N, N ~ GeometricDistribution[p]]

1-p
p

1-p 1) 1-efr+62

wi3[1] = —(5+—] b —_= o2
p A A-e®* 2
1

(1-p) (6+;> 1-e*+62

+

p A-ed*

Finally,

wi3[2] = wi3[1l] /. p » 1-e%* // Simplify

eé}

(-1+e°%) 2

which is Raic’s result.

I3 Trucks and cars

Raic, Toman : Marking, Thinning, Superposition - 1
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1. Suppose that the night traffic on the Jadranska street can be modelled by a homoge-
neous Poisson process with intensity 40 vehicles per hour, 10% thereof being lorries
and 90% being cars. Suppose that the types of particular vehicles are independent.

a) Find the probability that in one our, at least one lorry passes the Faculty of
Mathematics and Physics.

b) Suppose that during the first hour of observation, exactly 10 lorries have passed
by. Find the expected number of the cars passing the FMF during the same
period.

¢) Suppose that in the first hour of observation, exactly 50 vehicles have passed
by. Find the probability that among these vehicles, there were exactly 5 lorries
and 45 cars.

d) Compute the expected number of cars until the first lorry has passed by.

These are straightforward calculations
Part a)
Probability

Module[{AT = 0.1x40, PT, result},
PT = PoissonProcess[AT];
result = Probability[x[1] = 1, x ~ PT]]

0.981684

Part b) The expected number of cars is independent of how many trucks have passed

Module[{AT = 0.1x40, AC = 0.9 x40, PC, result},
PC = PoissonProcess[AC];
result = Expectation[x[1], x ~ PC]]

36.

Part c) We have to consider the number of ways the cars and trucks could be arranged.

Module[{nVehicles = 50, nCars = 45, nTrucks = 5, pCar = 0.9, pPTruck = 0.1},
Binomial[56, 5] pTruck"™™s (1 - pTruck)"Vehicles -nTrucks]

0.184925

Part d)

Module[ {AT =4, AC = 36, T, ENumberCars, ETimeOneTruck},
T = Expectation[T, T ~ ExponentialDistribution[AT]];

Print["ETimeOneTruck = ", T];
ENumberCars = Expectation[Nc[T], Nc ~ PoissonProcess[AC]];
Print ["ENumberCars = ", ENumberCars]]
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ETimeOneTruck =

E

ENumberCars = 9

|4 Light bulb failures

Raic, Toman : Marking, Thinning, Superposition - 2

2. The life time of a light bulb follows the exponential distribution with expectation
200 days. When the bulb blows out, it is replaced immediately by a maintainer.
Meanwhile, another maintainer replaces the bulbs regardless of their condition, ac-
cording to a homogeneous Poisson process with intensity 0°01 replacement per day.
Of course, we assume that the bulbs, actually their life times, are independent of
each other.

a) How [requently is a bulb replaced?

b) For a longer period, compute the percentage of the bulbs replaced because of
blowing out and the bulbs replaced because of ‘precaution.’

a) What is the minimum of the two expected times?

Module[{ABurnout = 1 /200, AReplacement = 1/10@},

Expectation[Min[x, y], {x =~ ExponentialDistribution[ABurnout],
y ~ ExponentialDistribution[AReplacement] }]] // N

66.6667

b) The expected time to burn out is 200 days. The expected time to be replaced is 100 days.

Module[{ABurnout = 1 /200, AReplacement = 1/10e},
Probability[x < y, {x ~ ExponentialDistribution[ABurnout],
y ~ ExponentialDistribution[AReplacement] }]]

w | =

|5 Three actors

Raic, Toman : Marking, Thinning, Superposition - 3

3. A director is searching for three actors, one man and two women. Men apply ac-
cording to a homogeneous Poisson process with intensity 2 per day, while women
apply according to a homogeneous Poisson process with intensity 1 per day, inde-
pendently of the men. Compute the expected time needed for the director to get
the man as well as the two women. We assume that all candidates are acceptable.

The independent expected time required to hire 1 man is
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Expectation[M, M ~ ExponentialDistribution[aM]]

1

M

while the independent expected time to hire two women is

Expectation[ W1 + W2,
{W1 ~ ExponentialDistribution[AW], W2 ~ ExponentialDistribution[AW]}]

2

AW

In this case the events are dependent. The quantity of interest is the maximum of M and W1 + W2

wl5[1] = Expectation[Max[M, W1 + W2], {M ~ ExponentialDistribution[AM],
W1 ~ ExponentialDistribution[AW], W2 ~ ExponentialDistribution[AW]}]

2 M3 + 4 XM? W + 2 AM W2 + W3
AMOW (M + W) 2

For the supplied intensities

wl5[2] = wi5[1] /. {AM - 2, AW -» 1} // N

2.05556

| could also use the fact that the sum of exponentially distributed times is distributed like an Erlang
distribution

wl5[3] = Expectation[Max[M, W],
{M ~ ExponentialDistribution[AM], W ~ ErlangDistribution[2, AW]}]

2 M3 + 4 XM? W + 2 AM W2 + W3
AMOW (M + QW) 2

|6 Used car

Raic, Toman : Marking, Thinning, Superposition - 4
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4. A married couple is searching for a used car. Each one of them is looking up offers
for their favourite brand. The offers for wife’s brand are coming according to a
homogenecous Poisson process with intensity A, while the offers for husband’s brand
are coming according to a homogeneous Poisson process with intensity .. The wife
is ready to buy a car when she encounters the third offer for her brand, while the
husband is ready when he encounters the second offer for his brand. The couple
buys a car when either of them is ready to buy. We assume that the offer processes
for both brands are independent.

a) Compute the probability that the couple buys a car according to wife’s choice.

b) Compute the expected time needed to buy a car.

Part a) The expected time for the wife to buy is (by two different methods)

{Expectation[TW, TW ~ ErlangDistribution[3, AW]],
Expectation[T1l + T2 + T3, {T1 ~ ExponentialDistribution[XW],
T2 ~ ExponentialDistribution[AW], T3 ~ ExponentialDistribution[AW]}]}

(=, 2

W W

The expected time for the husband to buy is

Expectation[TH, TH ~ ErlangDistribution[2, AH]]

2

AH

The probability that the wife buys is the probability of the event TW > TH

Probability[TW > TH,
{TW ~ ErlangDistribution[3, AW], TH ~ ErlangDistribution[2, 2AH]}]

AH2 (AHZ + 4 H W + 6Aw2)

(AH + W) 4

Part b)

Expectation[Min[TW, TH],
{TW ~ ErlangDistribution[3, AW], TH ~ ErlangDistribution[2, 2AH]}]

2 AH3 + 8 AH2 AW + 12 XH W2 + 3 W3
(AH + W) 2

| check the probability calculation against simulation
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Module[{kW = 3, kH = 2, AW =3, AH = 2, nSamples = 4000, simResults, lab, Bar},
Bar[{A_, mean_, error_}] := Line[{{A, mean - 2error}, {1, mean + 2error}}];
simResults =

Table[Flattene {AW, Simulation[kW, kH, AW, AH, nSamples]}, {AW, 2, 5}] // N;
lab = Stl["Theory confirmed by simulation"];

AH2 ()u-l2 +42HW + 6 sz)
Plot| ,
(AH + W) 4

{OW, 1, 5}, AxesLabel - {StL["AW"], StL["B[TW > TH]"]},
Epilog » {RED, Bar /@ simResults}, PlotLabel - lab]]

Theory confirmed by simulation

P[TW > TH]
09k

osf
OJf
Oﬁf
o5}
04}

AW

0.3F

Clear[Simulation];
Simulation[kW_, kH_, AW_, AH_, nSamples_] :=
Module[{sw, EH, timePairs, simResults, simMean, simError},
EW = ExponentialDistribution[AW];
EH = ExponentialDistribution[AH];
timePairs =
Table[Total /@ {RandomVariate[&EW, kW], RandomVariate[&H, kH]}, {nSamples}];
simResults = Boole[#[1] > #[2]]] & /@ timePairs;
{simMean, simError} =

{Mean[simResults], StandardDeviation[simResults]//WJnSamples } // N]

|7 Comparing two Poisson processes

Raic, Toman : Marking, Thinning, Superposition - 5

5. Consider two parallel Poisson processes with intensities A and . Find:

e the probability that in the second process, exactly one arrival in occurs before
the first arrival in the first process;

e the expected number of the arrivals in the second process before the first arrival
in the first process.

Part a)
For two merged processed, the probability that T1 occurs before T2 is
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w[1l] = p1 == Probability[T1 < T2,
{T1 ~ ExponentialDistribution[A1], T2 ~ ExponentialDistribution[A2]}]

A1
Al + 22

and similarly,

Ww[2] = p2 == Probability[T2 < T1,
{T1 ~ ExponentialDistribution[A1], T2 ~ ExponentialDistribution[A2]}]

A2
Al + A2

p2 ==

Thus the probability that an event in process2 occurs before an event in process1 is just p2 p1, in
analogy to Bernoulli trials.

plp2 /. (w[1] // ER) /. (w[2] // ER)

2122
(x1+xz)2

Part b)

Consider that arrival events occurring in the second process are “failures” that occur before a process 1

A1
A1+

arrival event that constitutes a “success”. The probability of successis p = ( ) . The GeometricDis-

tribution describes the number of such failures.

Expectation[x, x ~ GeometricDistribution[p]] /. p - )Ll/ (Al + )LZ) // Simplify

A2
Al

It is also constructive to work through Raic’s second method of solving this problem. Consider the event

X2 = {number of arrivals in process 2 before first arrival in process 1}

Then denote by T1 the first arrival time in process 1. We are interested in

P[X2 = 1 |T1]

The probability of exactly 1 arrival is

wb[1] = Probability[X2[T1l] == 1, X2 ~ PoissonProcess[A2]]

e ™2 T122

But T1 is exponentially distributed.
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wb[2] = Expectation[wb[1], Tl ~ ExponentialDistribution[Al]]

2122
(Mmz)z

Similar logic is used for the expected number of arrivals

wb[3] = Expectation[X2[T1], X2 ~ PoissonProcess[A2]]

T1 X2

wb[4] = Expectation[wb[3], Tl ~ ExponentialDistribution[Al]]
A2

Al

I8 Arriving students

Raic, Toman : Marking, Thinning, Superposition - 5

6. From a given time on, students of financial and general mathematics have an oppor-
tunity to lookup their corrected test papers. The students of finantial mathematics
arrive according to a homogeneous Poisson process with intensity 4 students an
hour, while the students of general mathematics arrive according to a homogeneous
Poisson process with intensity 2 students an hour. Assume that both groups of
students arrive independently of each other.

Suppose that during the first half an hour, exactly one student came to lookup
his/her test paper. Compute the conditional arrival time of the first student of
Jinancial mathematics. The time is measured from the beginning, assuming that
the students are arriving infinitely long in the future.

This is an exercise in the logic and manipulation of conditional expectations. | follow Raic’s argument.
There are two possibilities — a financial student arrives first with probability pe or a general student
arrives first with probability ps. Define the event A that one student arrived in the first half hour, Ar the
event that that student was a financial student, etc. Then

AF AG
PlAp|Al = pr = ——, Pldg|Al = p¢ = ——

Ar+ Ag Ap+ Ag

Denote Tk the time that the first financial student arrived. If we are given that Ar is true, then the arrival
could have occurred anytime before Ts = 1/2. So

Tr | Ar ~ UniformDistribution[0, 7]

On the other hand, if Ag is true then Tr is exponentially distributed.
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(Tr - Ts) | A¢ ~ ExponentialDistribution[Ar]

From these observations, the specific time Ts enters the the calculations.

The specific calculation proceeds

E[Tr N Al  E[TrNAF] +E[Tr N 4]

E[TF| Al = =
P[A] P[A]
P[AF] PlAs]
= —— [E[Tr | Arl + —— E[TF | AG]
P[A] P[A]
Next note
P[4rNA] P[4
P[AF| A] = 14r N Al = l4r] (because A is part of A)
PLA] PLA]
So
P[AF] P[A¢]
E[T|A] = —— " E[Tr | 4]

E[Tr | Ar] +
P[A] P[A]

=P[Ar | A1 E[TF | AF] + PlAc | A1 E[TF| 46l
= prE[Tr|Ar] + pcEITF|Acl

The first expectation is

E["Te|A"] == Expectation[TF, TF ~ UniformDistribution[{Q, TS}]]

E[TelAf] = —

Note that

E[TFr | Ag]l = E[Ts + (Tr—Ts) | Al = Ts + E[(TF — Ts) | A¢]

This second expectation is

E["Te-Ts|Ag"] == Expectation[TFS, TFS ~ ExponentialDistribution[AF]]

1
E[Te-Ts|Ag] = —

Thus
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E[Tr| Al
= prlE[Tr | AF] + pcElTF|Ag]

T 1
{2 enfre

Ap
Ar (Ts A 1
)l
Ap+ A(; 2 Ap+ AG Ap

|9 Distribution of relative arrivals of two Poisson processes

Raic, Toman : Marking, Thinning, Superposition - 7

7. Take two independent Poisson process with intensities A and p. Let n € N. Deter-
mine the distribution of the number of arrivals in the first process before the n-th
arrival in the second process.

Since the arrivals in the two processes can be considered to be Bernoulli trials with probabilities

A] A2
= pz =
A+ A A+,

D1

this is just an exercise in constructing a binominal distribution. For there to be n process 1 events before
m process 2 events.

n+m-1
IP[n process 1 events before m process 2 events] = Z Binomial[n + m — 1, k] p% py+m-1-k
k=n

20 Probability of reaching a point in space

8. Consider two homogeneous Poisson processes with intensities A and {l.. Denote by
1 . . . v . r(2

N,( ) the number of arrivals up to time ¢ in the first, and with 1\',( the number

of arrivals up to time ¢ in the second process. Compute the probability that the

two-dimensional walk (N,“), N,('“))) reaches the point (7, 7).

This is easy. It takes nTotal =i + j steps to get to {i, j}. There are Binomial[i + |, i] possible paths. The
probability of an X step is pX = AX/(AX + AY) and the analogous for Y. The probability of reaching {i, j} is

AX y AX J
PX(® = i, Y(® = j]1 = Binomial[i + j, i]( ] [ ]
AX + AY ) \AX + AY

| check against simulation.

Clear [PTheoretical];
PTheoretical [nX_, nY_, pX_, pY_] := Binomial[nX + nY, nX] pXx"™ py"Y
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Module[{AX = 1, AY = 2, nSteps = 40, nY = 4, nSamples = 4000, pX, pY, results},
{pX, pY} = {AX, AY} / (XX + XY);
results = Table[Flatten[{nX, NePTheoretical[nX, nY, pX, pY],
SimModel [nX, nY, AX, AY, nSteps, nSamples]}],
{nX, 2, 4}];

Module[{in-Fo, params, bars, Bar, G},
Bar[{A_, th_, mean_, error_}] := Line[{{A, mean - 2error}, {1, mean + 2error}}];
info = ({n[[l]], NF3e@#[2]], NF3@#[3], NF3e#[4] }) & /@ results;
PrependTo[info, {"nX", "theory", "sim", "simError"}];
params = {{"AX", XX, {5, 2}}, {"AY", AY, {5, 2}}, {"nSteps”, nSteps, {5, 0}},
{"nY", nY, {5, 0}}, {"nSamples"”, nSamples, {5, 0}}};

G[@] = Stl[StringForm["2-D Poisson random walk passing {nX, nY}"]];
G[1] = ParameterTable[params];

G[2] = LGrid[info, ""];

bars = {RED, Bar /@ results};

G[3] = ListLinePlot[results [All, {1, 2}], PlotMarkers -
{ChartElementData["SimpleMarkers"] [6]}, PlotStyle - Black , Prolog - bars,
AxesLabel - {St1l["nX"], St1["P[nX, nY]"]}, PlotRange -» {Automatic, {@, 0.5}}];
Grid[{{G[@], SpanFromLeft}, {G[1], G[2]}, {G[3], SpanFromLeft}}, Frame - All]]]

2-D Poisson random walk passing {nX, nY}
AX 1.00 - -
v | 200 nX |theory | sim |simError
T '40 2 [ 0.329 [0.341 [ 0.007
_noteps | 3 [ 0.256 |0.259 | 0.007
_n_ | 4| 7 To471 [o.160 | 0.006

nSamples 4000

P[nX, nY]

05

04

03
\O

0.2 \o

0.1

0.0 nX
20 25 30 35 40

Clear [SimModel] ;
SimModel[nX_, nY_, XX_, AY_, nSteps_, nSamples_] :=
Module[{px, pY, PX, PY, paths, results, mean, errorMC},
{pX, pY} = {AX, AY}/ (AX + AY);
{PX, PY} = {PoissonProcess[pX], PoissonProcess[pY]};
paths = Table[GenerateMergedPath[AX, AY, pX, pY, PX, PY, nSteps], {nSamples}];
results = TargetPathQ[#, nX, nY] & /@ paths;

{mean, errorMC} = {Mean[results], StandardDeviation[r'esults]/VnSamples } // N;
{mean, errorMC} ]

TargetPathQ is true if the path touches {nX, nY}
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Clear[TargetPathQ];
TargetPathQ[path_, nX_, nY_] :=
Boole[LengtheSelect[path [1 ;; nX + nY], (#[2] = "X") & | = nX]

Clear [GenerateMergedPath] ;
GenerateMergedPath[AX_, AY_, pX_, pY_, PX_, PY_, nSteps_] :=
Module[{pathx, pathY, pathMerged},
pathX = RandomFunction[PX, {©, nSteps}]["Paths"][11[2 ;; -21;

pathX = ({#[1], "X"}) & /@ pathX;
pathY = RandomFunction[PY, {©, nSteps}]["Paths"][11[2 ;; -21;
pathy = ({#[1], "Y"}) & /@ pathy;

(* Join the paths and sort by arrival time )
pathMerged = Sort[Join[pathX, pathY], (#1[1] < #2[1]) &]]

2| London Bombs

From Introduction to Probability, Grinstead and Snell (available on web)

Example 5.4 In his book,! Feller discusses the statistics of flying bomb hits in the
south of London during the Second World War.

Assume that you live in a district of size 10 blocks by 10 blocks so that the total
district is divided into 100 small squares. How likely is it that the square in which
you live will receive no hits if the total area is hit by 400 bombs?

We assume that a particular bomb will hit your square with probability 1/100.
Since there are 400 bombs, we can regard the number of hits that your square
receives as the number of successes in a Bernoulli trials process with n — 400 and
p = 1/100. Thus we can use the Poisson distribution with A = 400 - 1/100 = 4 to
approximate the probability that your square will receive j hits. This probability
is p(j) = e 147/41. The expected number of squares that receive exactly j hits
is then 100 - p(j). It is easy to write a program LondonBombs to simulate this
situation and compare the expected number of squares with j hits with the observed
number. In Exercise 26 you are asked to compare the actual observed data with
that predicted by the Poisson distribution.
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Module[{p = 1 /160, nSamples = 400, A, U, #, values, counts, rect, markers, G},
A = pnSamples;
U = UniformDistribution[{{@, 1}, {0, 1}}];
values = RandomVariate[%/, nSamples];
counts = Table|[Lengthe
Select[values, ((0.1i< #[1] < 0.1 (i+1)) & (0.1j < #[2] < 0.1 (j+1))) &],
{i, o, 9}, {j, o, 9]‘]3
markers = {Blue, Table[Text[ToString[counts[i, j1], {6.1i -0.05, 0.1j -0.05}],
{i, 1, 10}, {j, 1, 10}1};
rect = {Pink, Rectangle[{0.2, 0.3}, {0.3, 0.4}]};
G[1] =
Graphics[{rect, markers, {Point /@ values}}, Axes - Automatic, AspectRatio - 1,
GridLines - {Table[@.11i, {i, @, 10}], Table[0®.1i, {i, @, 10}]},
PlotRange -» {{90, 1}, {0, 1}}, ImageSize - 300];

H = HistogramDistribution[Flatten@counts];
-2 5k

A

}s

{k, 0, 10}, PlotLegends - {"sim", "Poisson"}, ImageSize - 300];
Grid[{{G[1], G[2]}}]]

G[2] = DiscretePlot[{PDF[#, k], =
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22 Store Credit (compound Poisson process)

From Introductory Probability - Gravner UCD p 137 (available on web)

5. Assume that a Poisson number with expectation 10 of customers enters the store. For

promotion, each of them receives an in-store credit uniformly distributed between 0 and 100
dollars. Compute the expectation and variance of the amount of credit the store will give.

This is purely an application of formulae derived for expectation and variance of a composite Poisson
process. See Poisson Process Basics 04-06-17
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Expectation and variance

[ELS]

> nuxPIN = ml = ux Y nPIN = nl = ux FINT = ELXG]EIN]

n=0 n=0

VIS] = o} EIN] + pk VIN]
= VIX]E[N] + E[X]? V[N]

w[l] = {E[N] - Expectation[x, x ~ PoissonDistribution[A]],
V[N] - Variance[PoissonDistribution[21]]}

{E[N] > A, V[N] - A}

w[2] = {E[X] -» Expectation[x, x ~ UniformDistribution[{a, b}]],
V[X] - Variance[ UniformDistribution[{a, b}]1]}

1 2
E[X , VX — (-a+b
{[HZ [1%12(a+)}

w[3] = {E[N]E[X], VIX]E[N] + E[X]*V[N]}

{(EIX]E[N], E[N] VIX] +E[X]?V[N]}

w[4] = w[3] /. w[l] /. w[2]

1 1
arb) A, — (—a+b)%x+ = (a+b)2
ae0) 1 L casb)tan k (aub)ta)

{

N |

W[5] = w[4] /. {a » 9, b » 100, A » 10} // N

(500., 33333.3)

which agrees with Gravner

(100% /12.) 10 +50° x 10

33333.3

Mathematica has built-in functionality for compound Poisson processes

Module[ {D},
D = CompoundPoissonDistribution[A, UniformDistribution[{a, b}]];
{{Mean[D], Variance[D]},
{Mean[D], Variance[D]} /. {a -» @, b - 100, X - 10} // N}] // Simplify

{

N |

(a+b) 2, é (a*>+ab+b?) 2}, {500., 33333.3}}
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Since this class of problems is important, I'll perform a simulation.

Module[{a = @, b = 100, A = 10, nSamples = 4000, CP, pathList, lab},
CP = CompoundPoissonDistribution[A, UniformDistribution[{a, b}]];
pathList = RandomVariate[C?, nSamples];
lab = stleStringForm["E[CcP] = ~°, V[cP] = ",

Round@Mean [pathList], Round@Variance[pathList]];
Histogram[pathList, {50}, PlotLabel - 1lab]]

E[CP] = 496, V[CP] = 33617

400 —
300 — [ -
200 f |
100
L
0 200 400 600 800 1000 1200

23 Poisson and the Law

Introductory Probability - Gravner UCD p 52 Famous People vs Collins case in LA 1968. (available on
web)

Example 5.11. Poisson distribulion and law. Assume a crime has been committed. It is
known that the perpetrator has certain characteristics, which occur with a small frequency p
(say, 10~®) in a population of size n (say, 10%). A person who matches these characteristics
has been found at random (e.g., at a routine traffic stop or by airport security) and, since p is

so small, charged with the crime. There is no other evidence. We will also assume that the
authorities stop looking for another suspect once the arrest has been made. What should the
defense be?

| just follow Gravner’s treatment. From a large number of people, n, suppose some modest number of
people, N, have with probability p the characteristics identified by the witness. Those people form the
pool of suspects. One of them, C, is the actual criminal. Choose A to be a person randomly arrested
from the pool of suspects. What is the probability that C = A?

PIC=ANN =1]
PIN = 1]

PIC=A|N=1] =

Now
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PC=ANN=21] = i[P[C: A| N =kIPIN =]
k=1

Since there is no other evidence, each of suspects is equally guilty,

1
IP[C=?(|N=k]=;

The probability P[V = k] is binomial, but for small p can be approximated by Poisson with A =np

) k
PC=ANN=z=1 =Y —
im1 k!

As a representative parameter value for A given small p and large n, choose A = 1

Module[{A = 1, Plim, lab},
Ak
Plim = Exp[-2] Sum|
k k

> {k, 1, 10}];
!

lab = stle@StringForm["Probability of guilt is ~~", NF1eN[Plim]];
.A.k
kk!
Epilog —» Line[{{@, Plim}, {20, P1lim}}], PlotLabel - lab ] ]

DiscretePlot[Exp[-2] Sum| > {k, 1, kMax}], {kMax, 1, 5},

Probability of guilt is 0.5
0.48 | °

0.46 [ °
0.44 -
042

040

This result disagrees with Gravner — but there appears to be an error in the formula

S0
oo

_ ~1 X
P(C = A,N >1) LZ et
k=1 -

The probability that the arrested person is guilty then is

(& A 00\ /\A'
2() N > . .
P(C=AIN 21) 1 —e A %k-k!
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Where does that 1 - Exp[-A] is the denominator come from ??7?

This problem is called the “prosecutor’s fallacy”
https://www.youtube.com/watch?v=s2G5MQIT6Jk
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